Collaborative Filtering: Matrix Completion and
Session-Based Recommendation Tasks*

Dietmar Jannach! and Markus Zanker?

LAAU Klagenfurt, Austria
2Free University of Bozen-Bolzano, Italy

Abstract

This chapter provides a self-contained overview on the basics of collaborative filtering rec-
ommender systems. It covers two main classes of recommendation scenarios. In the classical
matrix completion problem formulation, the task of an algorithm is to make longer-term rele-
vance predictions given a user-item rating matrix. In session-based recommendation scenarios,
the goal is to predict relevant items given a user’s observed short-term behavior. From an algo-
rithmic perspective, the chapter particularly focuses on neighborhood-based methods, which
were proposed in the early days of collaborative filtering and which are still relevant today. The
chapter addresses the entire life-cycle of algorithm development and also discusses libraries,
datasets, and implementation aspects. Furthermore, it covers evaluation issues and reflects on
today’s research methodology in the field. Overall, the chapter shall serve as a starting point
for readers, providing pointers to more detailed discussion of the various aspects regarding the
design and evaluation of collaborative filtering recommender systems.

1 Introduction

Collaborative filtering (CF) is the predominant technical approach in the field of recommender
systems in the academic literature (Jannach et al., 2012). It is also utilized by large companies
in productive use since clearly more than 15 years, with the system of Amazon.com being one of
the most prominent early examples of wide-scale deployment (Linden et al., 2003). The basic idea
of this class of algorithms is to exploit the “wisdom of the crowds” and to use patterns within
the collective behavior of a larger user community to determine suitable recommendations for an
individual user or in the context of a given reference item.

In contrast to other possible approaches to determine recommendations, collaborative filtering
techniques do not rely on content features and meta-data of the items when determining the rele-
vance of a recommendable item for a user like content-based or knowledge-based recommendation
strategies (Jannach et al., 2011). In its pure form?!, collaborative-filtering relies solely on a collection
of explicit or implicit preference signals of users towards items. Given the past preference signals
of an individual user, the goal is then to determine the (current) relevance of each recommendable
item by combining these individual signals with the preference patterns of the community. The
corresponding output of CF algorithms usually is either a set of relevance predictions for each item
or a ranked list of items.

*In: Berkovsky et al., Collaborative Recommendations: Algorithms, Practical Challenges and Applications,
World Scientific, 2019

1A variety of additional types of data can be combined with CF approaches, e.g., data that describes the users’s
context or features of items. See also Chapter 77 of this book.



1.1 Historical Background

Probably the first work that used the term collaborative filtering in today’s meaning in the context
of recommender systems was that of Goldberg et al. (1992). In their Tapestry system, users
of an experimental corporate email system could define personal filters (using a special query
language) for incoming messages that referred to different features of the emails, e.g., the sender
or its contents. “Collaborative” filters were a special class of filters, which could refer to so-called
annotations by other users and one could therefore express that only messages should be retained
that were voted positively by other users.

Soon afterwards different proposals were made of how to automate the task of filtering (news)
items based on personal preferences and the opinions of other people. Among these proposals was
the GroupLens system from Resnick et al. (1994), which proposed the comparably simple heuristic
that users who shared similar preferences in the past can be exploited to predict a relevance score
(rating) for incoming netnews messages (i.e., a user’s nearest neighbors). While during the past
two decades hundreds of different sophisticated algorithms were proposed for the rating prediction
task, the problem formalization and the basic heuristic underlying this early work has influenced
academic research in the field up to today.

1.2 Collaborative Filtering as a Matrix Completion Task

In Resnick et al. (1994), the recommendation problem is considered one of matriz completion (or
“matrix filling” as termed in the original work). The input is a matrix where rows and columns
represent users and items, respectively, and the cells of the matrix are the known preference
statements (ratings) for user-item pairs.

Table 1 shows an example matrix where five users (ul to u5) rated five items (if to ¢5). The
recommendable items for user w1 are items i4 and 45 since we assume that the u! already knows
the other items. The question is now if we should recommend i/ and @5 at all, and if so, in which
order the items should be recommended.

Table 1: User-item Rating Matrix.
il i2 i3 i4 i5

ul 3 4 3 7 7
u2 4 3 5
u3 1 3 1
ua 4 3 2 3
usb 3 3 2

While the ultimate computational task in many applications is to filter and rank the items,
many matrix completion approaches solve this indirectly by estimating a relevance score (or, in
this case, predicting a rating) for each unknown entry in the cell. While the ranking is determined
by these scores, items that do not surpass a minimum threshold need to be filtered.

Over the years, a huge variety of algorithmic approaches has been proposed to accurately predict
the missing matrix values, and many of the more advanced ones will be discussed in Chapter 77
of this book. In this chapter, we will mainly focus on early and comparably simple algorithms,
including the one proposed by Resnick et al. (1994), which is based on a nearest-neighbor scheme.

Abstracting the recommendation problem to a matrix completion task has different advantages
from an academic perspective, as discussed in Jannach and Adomavicius (2016). The computa-
tional task is very well defined and the generic nature of the problem formulation allows researchers
to design algorithms that are not specific to a certain application domain. Furthermore, different
mathematical concepts for data analysis or noise reduction, including principal component analysis



or singular value decomposition, can be directly applied on the given data. Finally, over the years,
a number of public datasets have become available and agreed-upon evaluation procedures were
established in the community (see Section 4 in this chapter). These developments, together with
the Netflix prize competition?, geared research efforts on the basis of a matrix completion problem
formulation during the last decade. Therefore, most of the chapters in this book will focus on these
algorithmic approaches addressing this problem formulation. Nonetheless, as pointed out, e.g., in
Jannach et al. (2016b) and Jannach and Adomavicius (2016), there are a number of aspects of
practical problems for which matrix completion is not the best problem abstraction. Consequently,
we will discuss an alternative problem formulation later in Section 1.4.

1.3 Basic Algorithms for Matrix Completion

In this section, we will review two basic collaborative filtering algorithms. Both of them are called
“memory-based” (in contrast to “model-based” ones) because their recommendations are not based
on learning an abstract representation of the data in a pre-processing step. Instead, they load the
existing preference signals of the community into memory and implement neighborhood-based
strategies to determine suitable recommendations.

1.3.1 User-based Nearest-Neighbor Algorithms

This algorithm scheme, which is often referred to simply as “user-based CF”, implements the
general idea that users “who agreed in the past will probably agree again” (Resnick et al., 1994).
To make a relevance prediction under that scheme, i.e., predicting the relevance of item 5 (called
“target item”) for user ul (called the “active user”) in Table 1, two main steps have to be done.

1. Identify a set of N users who exhibit similar rating patterns as ul (which are often called
“neighbors” or “peers”) and for whom a relevance signal for item 5 is known.

2. Given this set of N similar users and their ratings for item ¢5, combine their ratings to predict
the relevance of 5 for ul.

Consider the following example. When looking at the rating matrix in Table 1, we can see
that users u2 and u4 have rated item i5, and the question arises if their ratings for ¢5 would be
good predictors for the unknown rating of user ul. The basic assumption is if the ratings of user
ul were highly similar to those of users u2 and u4 then these neighbor’s ratings for ¢5 should be
useful predictors. User u2 rated items i3 and i4 exactly like ul and user u4 rated them similarly,
but did not use identical values.

Now, when implementing the general idea of user-based collaborative filtering in practice, two
basic design choices have to be made.

a) How do we assess the similarity of two users?

b) How do we combine the ratings of the similar users?

To answer the first question, Resnick et al. (1994) proposed to use Pearson’s correlation coef-
ficient as a measure to assess if users have similar tastes. Given two users a and b, their similarity
is computed as follows, see also Jannach et al. (2011),

EpeP(ra,p - ﬁ) (Tb,p — Fb) (1)

VEpep(rap —Ta)’V/ (rop — 70)

sim(a,b) =

2http://www.netflixprize.com
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where P is the set of items that were rated both by a and b, r, , refers to the known rating of
user a for item p, and the symbol 7, corresponds to the average rating of user a. The resulting
values range between —1 and +1, where a value +1 indicates that two users have identical tastes
and —1 expresses that users have opposite tastes. Values close to 0 are indicators of no or only an
insignificant correlation between tastes of two users. One characteristic of the correlation coefficient
worth noting is that the measure accounts for different interpretations of the rating scale by two
users. Instead of comparing absolute rating values, it compares how a user’s rating for an item
deviated from the user’s average rating value.

With respect to the second question of how to combine the relevance predictions given a set of
similar users N, Resnick et al. (1994) proposed to use the following function pred(a,p), to predict
the rating of user a for item p, see also Jannach et al. (2011).

Ypensim(a,b) * (ry, —Tp)
Yren|sim(a, b)|

(2)

The idea of this prediction function is to start with the average rating of user a and then
consider for each neighbor if item p has been rated above or below the individual average rating.
These rating signals of the nearest neighbors are consequently weighted with the similarity between
users. Thus the ratings of more similar neighbors have a stronger influence on the derived rating
predictions.

Different variations of the scheme proposed by Resnick et al. (1994) are possible along the
following dimensions.

pred(a,p) = Tq +

e Similarity function: Several standard similarity measures have been explored in the literature
including cosine similarity, Spearman’s rho, Jaccard index or Dice coefficient (Herlocker et al.,
2004), where the latter measures are only applicable in case the ratings are binary or unary.
Furthermore, considering only the user’s deviation from their average rating value for ordinal
and continuous rating scales accounts for a consistent under- or over-biasing. In addition,
the similarity function could also take the number of co-rated items into account and e.g.,
apply significance weighting, where the similarity of users with only few co-ratings is reduced
(Breese et al., 1998; Herlocker et al., 1999).

e Neighborhood formation: The most common strategies are to select a fixed number of nearest
neighbors or to include only those neighbors above a specific similarity threshold. Alterna-
tively, an adaptive neighborhood formation strategy can be implemented that, for instance,
could dynamically adjust the similarity threshold to keep the number of nearest neighbors
within a predefined range.

e Prediction function: Its task is to aggregate the ratings of neighboring users depending on
their similarities and additional characteristics in order to predict a rating value. Besides the
standard weighted average like in Equation 2, also specific modifications of the aggregation
function were proposed, like adjusting the importance weight of controversial items with a
high rating variance or amplifying the importance of very similar users (i.e., those close to
the highest similarity) (Breese et al., 1998).

Which algorithm configuration works best in practice has to be determined empirically based
on the specifics of the given application domain.

1.3.2 Item-based Nearest-Neighbor Algorithms

The idea of “Item-based CF” is closely related to the user-based variant already discussed with
the difference that we compute similarities between items based on co-ratings by individual users.
When we seek a prediction for user ul and an item ¢5, we do not scan the data for users that are



similar to ul but for items that are similar to 5 and then aggregate the ratings ul gave to these
similar items.

For instance, turning to our example in Table 1, we can compute the similarity between those
items that were rated by user ul (i1, ¢2, and ¢3) with item 5 and then again compute the prediction
for i5 as a similarity-weighted sum of the ratings for i1, 2, and 3. While user-based and item-
based CF are technically similar, in practice item-based CF has some advantages over the user-
based method, as discussed, e.g., by Linden et al. (2003). Consider that there are on average more
ratings (or, more generally, preference signals) per item than there are per user. The similarity
computations are therefore often based on a larger number of common ratings and the similarity
models are therefore more stable. Note that in the user-based case a few more ratings can lead to
a largely different set of neighbors. Given that item similarities have a tendency to be more stable,
Linden et al. (2003) proposed to pre-compute the item similarities in an offline process to speed up
the predictions at runtime. Their pre-processing method is computationally expensive in theory,
but scales well as there are typically many more customers than catalogue items. Furthermore,
for customers who only purchase a few best-selling items, a sampling strategy can be applied to
reduce the computational effort.

1.4 Collaborative Filtering as Session-Based Recommendation

So far, our discussion was limited to scenarios where the recommendation problem is considered
a matrix completion task and item relevance predictions are independent of the current usage
context, users’ intents, or recent observable behavior. However, in many practical applications
users can have different intents each time they visit, for instance, an e-commerce site. Such short-
term or ephemeral preferences are not explicitly covered in the basic problem formulation and thus
specific techniques have been developed to realize context-awareness of RS.? In addition, visitors of
commercial websites may also not be logged in, which means that in such situations no long-term
preferences are known. However, individualized recommendations can be based on click-stream
data of the current user session. While several works exploit other types of preference signals
than explicit ratings, one of the main assumptions of standard collaborative filtering approaches is
still that there is only a single type of preference signal relating users and items. Thus, advanced
techniques capable of coping with multiple different signal types or with multi-dimensional ratings
are discussed in later chapters. For instance, Jannach et al. (2018) provide a deeper discussion of
recommendation algorithms based on implicit feedback.

Next, we will sketch an alternative problem formulation for session-based recommendation,
where we are interested in recommendations that suit the context of a specific user session. An
in-depth discussion of sequence-aware recommender systems and a more formal characterization
of the problem can be found in Quadrana et al. (2018).

1.4.1 Inputs and Outputs

The central input to a session-based recommender is an ordered or time-stamped list of past user
actions. User actions can have different types (such as “item-view” or “purchase”) and are typically
associated with one of the items. The users themselves can be known, i.e. recognized returning
users, or anonymous. The (user, item, action) tuples can furthermore be enhanced with additional
attributes like user demographics or metadata features. The central part of the inputs can be seen
as a collection of enriched clickstream data, which can be easily collected on web platforms. A
main difference to the matrix completion formulation is that we can potentially observe multiple
interactions of a user with the same item over time.

3Context-aware recommenders use additional sources of information that describe the user’s current situation
and will be discussed in more detail in Chapter 77 of this book.



The second part of the inputs is the context of an “active” session, which consists of an ordered
list of the user’s actions in the session for which a recommendation is sought for. In the literature,
sometimes a differentiation between “session-based” and “session-aware” recommendations is made
(Quadrana et al., 2018). In “session-based” scenarios, no longer-term user history is known, e.g.,
because we have to deal with anonymous users. In “session-aware” scenarios, in contrast, also past
sessions of the active user might be known.

The output of a session-based recommender is an ordered lists of predicted next user actions,
where these actions are usually related to items, e.g., a list of items for which we predict a view
event or a purchase event. In the case of “next-basket predictions”, the predictions can also refer
to an entire set of items that are bought together. In the general form, the output is however
similar to that of a traditional “item-ranking” recommendation setup.

1.4.2 Goals and Computational Tasks

In contrast to the matrix-completion task, where the goal is usually to predict a context-independent
relevance score based on past preference signals, in session-based scenarios one has to also consider
the short-term intents of the user. The goal is therefore to determine a ranked list of items that
are relevant given the user’s actions in the current session. Since the relevance of the items can
largely depend on the users current contextual situation, the computational task can therefore
involve balancing the users’ long term preferences and their short-term situation and goals. Figure
1 illustrates the main idea of collaborative filtering as session-based recommendation.
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Figure 1: General principle of collaborative filtering as session-based recommendation. We are
given a current user session containing actions of different types with the goal of finding suitable
recommendations for the session. Both, past sessions of the individual user and the user community
can be considered when determining the recommendations. Different colors in the figure indicate
different types of actions.

Besides the user’s intent, in session-based recommendation scenarios, the intended purpose of
the recommendations also influences the contextual relevance of individual items. If, for instance,
the goal of a recommender is to show the user alternatives for a given product of interest, items
that are similar to those that the user has recently inspected are probably good candidates. If, in
contrast, the recommender should help the user find accessories, a very different set of shop items
becomes relevant. Finally, also the repeated suggestion of items that are already known to the user
can be a task of for a session-based recommender, which can lead to additional computations in
order to select such items and to determine the best point in time to make such recommendations.



Overall, there is no unique concept of a “good” recommendation in session-based recommen-
dation scenarios, which also makes the evaluation of such systems more complex in academic
environments as there are domain-dependent factors. With the matrix-completion problem formu-
lation, on the other hand, several important aspects of real-world recommendation problems are
not addressed at all, like short-term trends, the repeated consumption of items, or the consideration
of multiple interactions of a user with an item over time.

1.5 A Nearest-Neighbor Algorithm for Session-Based Recommendation

While user-based CF and item-based CF can be considered as “canonical” approaches to the matrix
completion problem that are popular baselines for algorithm comparisons, no standard baseline
algorithm (and evaluation protocol) yet exists for session-based recommendation. Historically,
typical technical approaches that consider the sequences of events in the recommendation process
include works that rely on some form of sequential pattern mining techniques (Mobasher et al.,
2002), Markov models (Shani et al., 2005), explicit user feedback (Zanker and Jessenitschnig,
2009b,a) and, more recently, recurrent neural networks (Hidasi et al., 2016), see also Chapter ??
of this book.

An alternative to attempting to mine sequence information from the logs, which is often a
computationally costly process, is to focus only on co-occurrence patterns within the different user
sessions. One of the most visible examples of this approach in practice are Amazon’s “Customers
who bought ...also bought” recommendations. Technically, these recommendations can be im-
plemented by considering pair-wise item co-occurrences in past transactions to predict additional
items for the current shopping session.

This pairwise approach can be extended to a session-based nearest neighbor algorithm. The
idea is to take the elements of the current user session and look for past sessions — including those
by other users — who are similar to this session. We then examine which other elements appeared
frequently within this set of “neighbor sessions”. These elements then finally represent our recom-
mendation candidates. In Zanker and Jessenitschnig (2009b) this similarity computation is even
designed as a stepwise feature-combination approach, where the feedback categories representing
different types of user actions such as “view events”, “menu navigation” or explicit feedback are
prioritized and low-priority feedback categories are only exploited if not sufficient recommendation
candidates can be identified otherwise.

More formally, let s be the current user session, where a session is defined as an ordered list
of recorded user actions. Each list entry can be a complex object describing, e.g., the respective
item ID and the action type, or simply a set of item IDs if only actions of one type (e.g., “view
events”) are considered. Given the set S of past sessions of all users and a function sim(sl, s2)
that returns a similarity score for two sessions s1 and s2, compute the set IV that contains those
k sessions from S, which have the highest similarity score according to the function sim.

The goal is now to compute a relevance score for each recommendable item ¢ for a given session
s and a set of neighbor sessions N. We can compute this score as follows, see also Bonnin and
Jannach (2014).

scorexn (i, 8) = Lpensim(s,n) x 1,(7) (3)

where 1,,(¢) = 1 if session n contains item ¢ and 0 otherwise. The final list of recommendations is
then determined as usual by sorting the recommendable items in decreasing order of the relevance
score.

Although this method does not take the order of the items within a session into account, it turns
out that it leads to competitive results, e.g., in the domains of next-track music recommendation,
next-item recommendation in e-commerce, and next-task prediction in workflow modeling, see,



e.g., Lerche et al. (2016); Jannach et al. (2016a, 2017); Jannach and Ludewig (2017b); Ludewig
and Jannach (2018).

Similar to the already mentioned user-based and item-based CF methods, different similarity
functions can be applied for session-based recommendation methods. Since we typically have
to cope with binary or actually unary data, i.e., an item appears or does not appear within a
session, we can apply, for instance, set-based similarity measures like the Jaccard index or binary
cosine similarity. Recently, different sequence-aware similarity functions were explored in Ludewig
and Jannach (2018). The obtained results indicate that using such similarity functions in many
cases further increase the prediction accuracy of neighborhood-based models. As a result, these
comparably simple models often even outperform some of today’s sophisticated deep learning based
algorithms.

Finally, the number of neighbors is another parameter to be considered. It depends on the
application domain, where, for instance, for next-track music recommendation reasonable values
range from less than 10 neighbors up to hundreds of neighbors (Bonnin and Jannach, 2014; Jannach
and Ludewig, 2017b).

2 Recommendation Paradigms

In this section, we will first discuss the general pros and cons of the collaborative filtering recom-
mendation paradigm — also in comparison to other recommendation mechanisms — and will then
focus on the specific advantages and limitations of neighborhood-based methods.

2.1 Pros and Cons of Collaborative Filtering
2.1.1 Existing Recommender Systems Paradigms

Recommender systems are typically categorized into collaborative filtering methods, as discussed
in this book, content-based methods, knowledge-based approaches, and hybrids that are different
combinations of the aforementioned paradigms (Jannach et al., 2011).

The idea of content-based methods is to estimate the preference of an individual user towards
the specific characteristics of items. In the movie domain, for instance, a corresponding content-
based user profile could comprise to which extent a user likes action movies or an actor/actress.
Thus, the profile itself is learned by analyzing the features of items that the user liked or disliked
in the past.

Knowledge-based approaches also consider item features, but are usually based on explicit,
formalized, and domain-dependent information about which items are a good match for a given
set of user preferences. These user preferences are typically elicited in an interactive process
and are specific for a given recommendation problem instance. The logic of how to match user
preferences and items can, for example, be expressed in the forms of logical rules, constraints, or
utility functions.

2.1.2 Comparison of CF Methods with Other Paradigms

All of these methods have their advantages and limitations, which is why various proposals to build
hybrid systems were made over the years that aim at overcoming the shortcomings of individual
methods.

One main advantage of collaborative filtering methods is that no knowledge about the recom-
mendable items is required. In many application domains, including e-commerce, product catalogs
can comprise tens of thousands of items, often leading to significant challenges in terms of product
data management for companies. This is particularly the case when the online platform where the
recommendation system is deployed is a big market place.



Pure CF-based approaches and the corresponding algorithms can furthermore be applied to a
variety of domains and product categories. A large number of different algorithms was proposed
over the years and a multitude of off-the-shelf implementations in different programming languages
are publicly available. When compared to most knowledge-based systems, CF-based methods (and
content-based ones usually as well) can learn over time when additional preference signals become
available. In many knowledge-based systems, in contrast, the underlying rules have to be updated
when new products with new features should be recommended.

On the downside, CF-based recommenders require the existence of a large community of users in
order to be able to identify patterns in their preference relations and behavior. This requirement
for a large and ideally returning user community can be particularly challenging for smaller e-
commerce sites. The other main problem of CF-based systems is its limited capability of dealing
with first-time users and novel items. For new or cold-start users, no preference signals are initially
available, making it impossible to find neighbors in the user-based CF approach described above.
Similar problems exist for new items that have been recently added to the item database. A huge
number of academic research papers made proposals to deal with these aspects, e.g., by using
initially an alternative recommendation paradigm or to recommend mostly popular items to new
users, see, e.g., Bobadilla et al. (2012); Huang et al. (2004); Said et al. (2012a).

2.2 Pros and Cons of Nearest-Neighbor Methods

Nearest-neighbor methods in general have the advantage that they are easy to understand, imple-
ment, debug, and maintain. More sophisticated algorithms — as will be discussed in later chapters
— can be challenging to implement for a typical software engineer. Furthermore, debugging unex-
pected outputs becomes challenging and significant engineering effort is required to deploy such
algorithms in a production environment. For instance, the winning algorithms of the Netflix
prize never made it into production, partly due to the involved engineering efforts (Amatriain
and Basilico, 2012). In contrast to model-based approaches, which, e.g., rely on learning a pre-
diction function from historical data in an offline process, nearest-neighbor methods are able to
immediately consider new preference signals once they become available.

At least from an academic standpoint, the outputs of nearest-neighbor methods are considered
to be “easy to explain”, as done, e.g., in Herlocker et al. (2000) and a number of ways of explaining
recommendations based on user-based CF methods were proposed in the literature. To which
extent these academic approaches are suited in practice, is, however, still a largely open question.

Finally, nearest-neighbor methods are considered to lead to “reasonably good” “ recommen-
dations in many domains. Many more sophisticated algorithms exist which outperform nearest-
neighbor methods in offline experiments in terms of predictive accuracy measure. However, it is
not clear if these — often only slightly better — results can be actually noticed by users or translate
into business value for the provider.

The main challenge of nearest-neighbor methods often lies in their computational complexity.
When using a naive implementation, the required computation times very soon exceed the narrow
time frames of online recommendation scenarios. Obviously, one cannot scan thousands or even
millions of possible neighbors in real-time, whenever a new recommendation should be served to
the user. Therefore, offline pre-processing, data-sampling, or parallelization techniques have to be
applied to ensure the scalability of neighborhood-based methods, see, e.g., Jannach and Ludewig
(2017a).

3 Practical Implementation Considerations

Recommendation systems, and collaborative filtering in particular, are a key application of data
mining and machine learning at a large scale in industry. The research field of recommender



systems is traditionally closely linked to industry needs and application scenarios. Industry chal-
lenges like the famous one million dollar Netflix Prize (Bell and Koren, 2007) led to additional
research momentum and the ACM conference series on recommender systems, as a result, usually
attracts a high share of industry participants. Nevertheless, specific aspects of recommender sys-
tem implementations traditionally only receive limited attention in academia as will be discussed
next.

Scalability Amazon is one of the earliest adopters of large-scale recommendation techniques to
personalize their customers’ shopping experience. Thus, in an early paper on item-based collabora-
tive filtering employed at Amazon (Linden et al., 2003), the focus was put on the scalability of this
neighborhood method and short response times. The importance of scalability is, for instance, also
stressed in a blog post from Netflix (Amatriain and Basilico, 2012), where the strongest algorithms
from the first progress prize could be put to practice only with significant engineering effort since
they had to operate on 5 billion instead of 100 million ratings. Questions of scalability will also
be discussed in Chapter 7?7 of this book.

Freshness and Continuous Updates In addition to the ability to scale to large amounts of
data, also the freshness of the data and models is an important aspect for real-world applications.
In particular, for cold-start users being able to continuously update the user model and the rec-
ommendations based on the most recent user actions within milliseconds is an important system
requirement. The concept of a three-tier pipeline architecture consisting of offline, nearline and
online tiers has been proposed for this purpose (Amatriain and Basilico, 2012). The offline tier
performs the traditional batch processing to rebuild models at predefined intervals, the nearline
tier is responsible for incremental model updates that should be very close to real-time. The on-
line tier finally performs the actual filtering of pre-computed recommendations based on the most
recent user feedback and general trends.

User Interface Francisco Martin, at that time CEO of the recommendation service provider
Strands, stated in his keynote at ACM RecSys 2009 that the user interface can be much more
important than the recommendation algorithm itself (Martin, 2009). Also Amatriain and Basilico
(2015) mention that the user interaction design is often disregarded in the literature, even though
it can have a major impact in practical systems. A recent survey of existing research on user
interaction aspects of recommender systems can be found in Jugovac and Jannach (2017); aspects
of user-centric evaluation approaches for recommender systems are also discussed in depth in
Knijnenburg et al. (2012); Knijnenburg and Willemsen (2015); Pu et al. (2011)

Data Integration When it comes to interacting with users, almost everything that is on display
at a commercial site can in principle be subject to personalization (Amatriain and Basilico, 2012).
This, as a result, means that multiple categories of data sources can be considered as a potential
input to algorithms, which in turn leads to a need for engineering the most appropriate features.
In addition, it becomes more and more visible that explicit item ratings, as used in the context of
the Netflix prize, are not the most helpful source to predict the users’ next actions, e.g., because
there can be a gap between what items users rate highly and which items they actually consume.
Therefore, many different types of implicit feedback signals about their behavior, transactions and
social connections can be exploited, as discussed in Jannach et al. (2018). A particular challenge
in that context is that there are not only various potential types of signals but that there can be
huge amounts of data to be processed. In Basilico (2013), the author for example mentions that
Netflix processes over 100 billion events per day.
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Business metrics Finally, when it comes to assessing the quality or value of the recommendation
functionality, obviously the well-known RMSE has to be seen as just one proxy measure for the
recommendation quality, but in reality more encompassing business metrics have to be used in
practice. For instance, click-through rates, choice time, user engagement, or low churn rates are
measured as success indicators in practical applications (Gomez-Uribe and Hunt, 2015).

Frameworks and Libraries From an engineering perspective, substantial progress was made
in the last years and developers can today build their solutions based on several industry-strength
frameworks and infrastructures that were not around a decade ago. Examples of such frameworks
are the Apache Prediction]O ML server? or the Tensorflow® open source library for numeric com-
putations using data flow graphs that has been successfully used for building deep learning and
factorization-based algorithms. From a more research oriented perspective, a variety of mature
open-source recommendation libraries on different language platforms are available today as well,
like LensKit (Ekstrand et al., 2011) for Java®, MyMediaLite (Gantner et al., 2011) for the .NET
platform”, different ML libraries such as scikit-learn (Pedregosa et al., 2011) for Phyton or the
rrecsys package (Coba et al., 2017a,b) for R®. Public datasets and libraries will be discussed in
more depth in Chapter ?? of this book.

4 Practical Evaluation Considerations

In the following section, we will discuss common ways of evaluating collaborative filtering recom-
mender systems. An in-depth discussion of practical challenges of evaluating recommenders can
be found in Chapter ?? of this book.

4.1 General Considerations

Algorithmic approaches to build recommender systems, including collaborative filtering based ones,
can in general be evaluated in different ways. The most informative way of assessing the effects of
different recommendation strategies on users and the corresponding business value is to run A/B
tests using websites or applications that host recommender systems. In this context, A/B testing
corresponds to a randomized experiment, where the users of the system are split into two or more
groups and each group is served by recommendations generated in different ways, i.e., usually the
groups see different recommendations or different forms of how the recommendations are presented.
At the end of the experiment period, one can then compare the effects of the different strategies,
e.g., in terms of the number of clicks on the recommended items or on sales. For instance, Zanker
(2012) compares two explanation strategies on a spa tourism platform or chapter 8 in Jannach
et al. (2011) compare recommendation strategies for games on a mobile platform.

While A/B tests are the most informative measurement instrument, there are also pitfalls
when designing these experiments and interpreting their results. For instance, one has to make
sure in advance to have a large enough sample to ensure that any observed differences of method A
compared to method B are statistically significant. Also, there can be unexpected or unconsidered
periodical effects that might lead to distorted results and wrong conclusions.

At the same time, one usually cannot run a virtually infinite number of A/B tests in practice
in order to evaluate hundreds of different algorithm configurations. Therefore, companies might
resort to cheaper offline tests to determine those candidate configurations that most probably will

4https://predictionio.incubator.apache.org
Shttps://www.tensorflow.org

Shttp://lenskit.org

"http://www.mymedialite.net
8https://cran.r-project.org/web/packages/rrecsys/index.html
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lead to good results in the production system (Gomez-Uribe and Hunt, 2015). We discuss such
offline evaluation procedures in the next section.

4.2 Offline Evaluation

Since academic researchers usually cannot run experiments on real platforms, they commonly use
methodologies to compare algorithms based on historical data. Academic research in collaborative
filtering recommender systems is therefore largely dominated by such offline experimental designs.

The methodology to evaluate collaborative filtering system is mainly adopted from related
research fields, in particular from the fields of information retrieval and machine learning (Herlocker
et al., 2004).

4.2.1 Protocols and Measures for Matrix Completion Problems

The most common procedure to evaluate recommenders is based on rating datasets. Such rating
datasets contain at most one explicit or implicit preference signal for a set of users and recom-
mendable items and can thus be considered as a typically very sparse rating matrix. The general
approach is then to split the data into a training and test part, and to predict the preferences in
the (held-out) test set based on the patterns that were identified in the training data. Usually,
this process is repeated several times in a cross-validation process.

Rating prediction accuracy In the matrix completion task, the goal is to predict the held-out
ratings and the quality of the recommendations can, for instance, be measured in terms of the
average deviation of the predictions from the true (hidden) values. This measure is referred to as
the Mean Absolute Error (MAE). Particularly in the last decade, researchers more often report
the Root Mean Squared Error (RMSE), which penalizes larger deviations stronger than smaller
ones. Details of how to calculate the measures mentioned in this section are provided, e.g., in
Herlocker et al. (2004). Many modern collaborative filtering algorithms that will be discussed in
later chapters of this book in fact try to minimize the squared error based on an offline training
phase.

Looking at results that are obtained for datasets that contain movie ratings on a five-point
scale, we can see that modern algorithms are able to achieve MAE values slightly below 0.7 and
RMSE values that are around 0.85. The absolute values reported in the literature can however
not always be directly compared even when the same dataset is used, because researchers often
apply data-filtering procedures, e.g., to filter out inactive users, or use different cross-validation
configurations, which leads to larger or smaller training sets, see also Said and Bellogin (2014).

Classification and ranking accuracy While rating prediction can be considered a classical
machine learning (function learning) task, it is more “natural” to consider recommendation as a
classification or ranking task. Accordingly, the evaluation procedures and measures from this field
can be applied.

The probably most common approach according to the literature (Jannach et al., 2012) is to
measure and report precision and recall. Instead of rating prediction, the task of the recommender
is to compute a size-restricted ranked list of recommended items for a given user. Usually, the
length of the recommendation lists and correspondingly the measurement is limited to a top-10 or
top-20 list of items.

The quality of such a recommendation list is then numerically quantified by considering the
amount and position of “relevant” items in the top-ranked lists of all users of the test set. The
precision measure counts how many items in the top-n list are relevant. With recall, we measure
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how many of the relevant items actually made it into the top-n list. Since there is often a trade-
off between precision and recall — longer list sizes will lead to higher recall and lower precision —
researchers often report the F-measure, which is the harmonic mean of precision and recall.

The values that are reported for precision and recall, even for the same dataset, vary strongly
from research paper to research paper. The main reason is that the absolute values depend on
how one treats those items in the ranked lists for which no “ground truth” is known, i.e., the items
for which no rating information existed in the test set. If these items with unknown ground truth
are removed from the recommendation lists before determining precision and recall, the resulting
values are usually very high and above 70 to 90 percent. Otherwise, if the items without unknown
ground truth are kept in the list, precision and recall are usually below 10%. The low numbers for
the latter case are not surprising, given that we often have thousands of recommendable items but
only know the ground truth for a small subset of these items. Additional factors that influence
the absolute values of the measures are the chosen list size and the number of cross-validation
splits. In research works that are based on explicit (1-to-5 star) rating datasets, the outcomes are
furthermore influenced by the choice of the threshold that is used to discriminate relevant from
irrelevant items. Some authors only consider items to be relevant that obtained 5-stars, whereas
others consider all items as relevant that have a rating that is higher than the user’s average rating.

Precision and recall do not account for the position of the relevant items in the result set.
Obviously, however, having a good matching proposition at position 1 is favorable over having it
at a later position. Researchers therefore often use measures like the Mean Reciprocal Rank (MRR)
that also consider the position of the relevant elements. More details about this and additional
rank measures like NDCG or AUC etc. can be found in Herlocker et al. (2004).

Beyond-accuracy measures In recent years, researchers investigated a number of quality mea-
sures beyond prediction or ranking accuracy. Specifically, the question of recommendation diversity
was analysed in depth in many works. Being able to produce a set of diverse recommendations is
important in many application domains, since the recommendation of many items that are very
similar (e.g., movies of a certain series) can be of limited value for the user. The diversity of a
recommendation list can be quantified in different ways, e.g., based on the pairwise similarity of
the items in terms of their features.

Other possibly desirable features of a recommendation algorithm can be to not only recom-
mending popular items or, more generally, not focusing too much on a small set of items that is
recommended to everyone. Furthermore, depending on the application domain, it can be desir-
able that the algorithm points the user to items outside of his or her usual taste. This is often
considered as quality factors like novelty and serendipity (Castells et al., 2015).

In most cases, considering additional quality factors comes at the price of reduced accuracy
values. To be able to judge the quality of recommendations in many domains therefore requires an
understanding of the specifics of the domain and a corresponding algorithmic approach to balance
the often competing quality goals.

4.2.2 Protocols and Measures for Session-Based Recommendation

When evaluating session-based algorithms offline, the general principles apply as when evaluating
based on rating datasets. The existing datasets, which in this case contain user action logs instead
of item ratings, have to be split into training and test sets and the main computational task is to
predict the hidden actions.

From the computational perspective this is however slightly different. First, as described above,
rating prediction is not meaningful in this setting and our goal is usually to predict the next user
action(s), e.g., the next item-view event. Second, in session-based recommendation we are provided
with additional information about the user’s most recent actions, which have to be considered in
the computations.
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In Jannach et al. (2015b), the authors proposed a general evaluation scheme for session-based
recommendation. The overall idea is visualized in Figure 2. In a first step, the sessions of each user
are split into a training and a test part, e.g., by considering the most recent 20% of the sessions of
a user as test sessions. The training data represents the inputs for algorithms to learn long-term
preference models. The sessions in the test set are then evaluated individually according to the
given prediction task, which could be, e.g., to predict the purchase event in the session. To avoid
random effects, one can repeatedly apply the protocol using, e.g., a random subsampling method.

The proposed protocol has two special parameters that can be set for an evaluation. First,
there is a parameter v that describes how many items of the current session should be revealed to
the algorithm when making a prediction. By varying this parameter, one can measure how quickly
different algorithms are able to adapt their recommendations to the user’s current goal. With the
second parameter p, we can determine how many sessions that precede the current user session
should be revealed to the session-based algorithm. By changing this parameter, we can test to
which extent algorithms are able to leverage the information in these sessions, e.g., by reminding
users of items that they have inspected on previous days.

While the protocol was designed for e-commerce scenarios, it is not limited to this domain.
Furthermore, it can also be used in case of anonymous sessions. In this case, the training and
test datasets obviously cannot be created per user and revealing previous sessions (by changing
parameter p) is not possible as well.
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Figure 2: Session-based evaluation protocol as proposed in (Jannach et al., 2015b).

Accuracy measures In general, the same classification and ranking measures described above
(e.g., precision, recall, and MRR) can be applied. Depending on the chosen evaluation setup,
sometimes only one item (the immediate next user action) is the relevant one and precision and
recall are proportional in this case.

Since we have user actions of different types, it can furthermore be meaningful to define new
measures that assess an algorithm’s prediction capabilities in different dimensions. In the ACM
RecSys 2015 challenge?, for example, the task was to first predict whether or not a user will make a
purchase in the current session, and if so, to predict which item will be purchased. The evaluation
measure used in the challenge correspondingly considered both aspects. An in-depth discussion of
evaluation aspects for session-based recommenders can be found in Quadrana et al. (2018).

Beyond accuracy measures Depending on the domain, again other quality factors like diver-
sity, novelty, and serendipity can be relevant for session-based recommendation scenarios. In some

9http://2015.recsyschallenge.com
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domains it can also be important that the recommendations represent a good “continuation” for
the given session. This holds in particular when the problem is to find a suitable next track to
play in a music recommendation scenario. In this application, it is typically desirable that the
next played tracks are similar to the last played ones, e.g., in terms of the tempo or mood. Also
in the music recommendation domain, it can furthermore be important that the set of recom-
mended tracks is coherent in itself and the transitions between the individual tracks are smooth,
see also Chapter 77 of this book. A deeper discussion of beyond-accuracy measures can be found
in Chapter ?77.

4.2.3 Discussion

In this section, we reviewed basic and common approaches to evaluate recommendation algorithms
in offline experiments. In the academic literature, a rich variety of alternative evaluation measures
and protocol variants, e.g., to simulate cold-start situations, are used. However, even though the
protocols and the measures are in principle well-defined, there are many subtle differences that can
have an impact on the absolute values that are measured. Comparing the results across different
research papers is therefore difficult, e.g., because different versions of precision and recall are
used, datasets are pre-processed, a number of different cross-validation runs are made, or because
different ways of splitting the data were applied.

The main problem when applying offline evaluation protocols however often lies on the choice
of the quality measure(s). Academic research is mostly focused on prediction accuracy, but in
many applications it might not be clear that higher accuracy translates into practical (business)
success of the application. It is therefore important to find adequate measures that are chosen in
line with the purpose of the recommender system (Jannach and Adomavicius, 2016) and which
represent good proxies of the true success measures (e.g., increased sales or customer retention),
which often cannot be directly measured in offline experiments.

4.3 The Role of User Studies

The aforementioned offline evaluation methodology is well-accepted in the research community.
Measuring the error in terms of RMSE or MAE when assessing the rating prediction capability
resembles the evaluation practice in the field of machine learning, while the methodology for
assessing the classification and rank accuracy is borrowed from the field of information retrieval.
Nevertheless, more and more works are challenging the view that algorithmic contributions may
be solely evaluated based on offline experiments (Konstan and Riedl, 2012; Jannach et al., 2016b)
for several reasons. First of all, recommendation techniques aim at helping users by avoiding
situations of information overload and by supporting them in decision-making tasks. Moreover, in
many situations recommendation functionality should simply facilitate an enjoyable interaction of
a user with an information system. Thus, recommendation systems are about enhancing the user
experience and the ability of a system to accurately assess users’ preferences and needs. Based
on these assumptions, making correct predictions or providing many good recommendations is
therefore an important component in order to make users happy and to explain their satisfaction
as has been proposed by Knijnenburg et al. (2012). However, being able to select and present items
that are relevant for users is not the only component that influences user satisfaction. Experimental
user studies therefore play an important role in determining how different aspects of a recommender
contribute to user satisfaction and system usage (Knijnenburg and Willemsen, 2015).

In general, following the above-mentioned works, offline evaluations can only help to assess a
small part of the whole picture and therefore need to be complemented with user studies. This
is in particular important since a number of recent works indicate that the quality perception or
business value of a recommender system does not necessarily correlate with the accuracy measures
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commonly used in offline experiments (Garcin et al., 2014; Jannach and Hegelich, 2009; Kirshen-
baum et al., 2012; Cremonesi et al., 2012).

The recent study of Rossetti et al. (2016), for instance, shows that an algorithm ranking based
on offline experiments can contradict the outcome of ranking algorithms based on user feedback
in an experimental user study, where Precision@k was measured both offline and online. For
these reasons, industrial leaders often employ a development pipeline that involves three steps:
traditional offline experiments to identify failing approaches from the very beginning; user studies
to identify and better understand promising candidates, and A/B testing in the field as the third
step in the assessment cycle.

Beyond this aforementioned pragmatic approach of employing user studies as an intermediate
step before field tests, further developments of the practice how user studies are conducted can be
envisioned. Specifically, since recommendation systems support decision making tasks, additional
mechanisms for measurement and feedback collection can be used in the future. For example,
The emerging field of NeuroIS!? employs sensors and methodologies from neuroscience in order to
more accurately understand the cognitive processes of users when interacting with technology and
information systems. For instance, Rook et al. (2018) observed that users with specific personality
traits (such as an anxiety-related behavioral inhibition) tend to be more engaged when confronted
with proactive recommendations and that the accuracy of provided recommendations moderates
this effect, i.e., inaccurate recommendations make them ruminate about them.

In many cases, user studies also have their limitations and the obtained insights have to be
interpreted with care. The common potential threats to the validity of the obtained findings include
the following. The participant population, for example, which are often students, might not be
representative for the general user population or too small; often, also the study participants do
not face a true decision situation and, e.g., do not actually make a real purchase. Questions about
their behavioral intentions (e.g., “willingness to buy”) might not reflect the findings that one would
obtain in a real shopping environment. Finally, some studies suggest that there are familiarity
biases in the user perception and that study participants consider items as good recommendations
when they already know them (Jannach et al., 2015a; Kamehkhosh and Jannach, 2017).

4.4 Datasets

Public datasets are a key ingredient when performing academic research in the field recommender
systems. Such datasets, like the one from the MovieLens (ML) movie rating and recommendation
platform and from companies like Netflix (Amatriain and Basilico, 2015), have led to significant
algorithmic improvements in the fields over the years. In combination with public libraries that
implement various algorithms, they also led to a certain level of reproducibility of the obtained
research results (Ekstrand et al., 2011). However, the availability of datasets also heavily biases
the focus of research contributions of the community (Jannach et al., 2012). The MovieLens rating
datasets have been available for almost two decades (Harper and Konstan, 2016) and have signifi-
cantly contributed to the fact that collaborative filtering has become the dominant recommendation
paradigm in academia and that movies are the most popular application domain investigated by
researchers. Table 2 shows the characteristics of a few popular datasets from the movie domain.
Many other application domains for recommender systems beyond movies have been investi-
gated over the years as well. Often, these research works are based on datasets that were published
by companies in the context of research challenges and competitions. A number of comparably
popular datasets are summarized in Table 3, including data from the domains of jokes, dating,
music, or general e-commerce. Overall, the increasing availability of data for different domains,
different product categories and different sources will in the future allow to further intensify re-
search on cross-domain recommendations (Cantador et al., 2015), on the combination of a variety

10See http://www.neurois.org/ for more information.
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Table 2: Characteristics of popular movie datasets.

Dataset Users  Items Ratings Scale
ML 20M* 138,493 26,744 20,000,263 [0.5, 5]
ML Latest Small® 671 9,066 100,004 0.5, 5]
MovieLens Latest® 259,137 39,443 24,404,096 [0.5, 5]
ML 100K* 943 1,682 100,000 [0.5, 5]
ML 1M* 6,040 3,706 1,000,209 [0.5, 5]
ML 10M* 69,878 10,677 10,000,054 [0.5, 5]
ML Tag Genome® 1,100 9,734 12,000,000 binary
MovieTweetings 2,014° 24,924 15,142 212,857 [1, 10]
FilmTrust® 1,508 2,071 35,497 [0.5, 4]
CiaoDvd® 7,375 99,746 278,483 [1, 5]
Douban? 129,490 58,541 16,830,839 [1, 5]
Netflix® 480,189 17,770 100,480,507 [1, 5]

Remarks and links for download

age, gender, occupation, zip, timestamp, free-text tags
http://grouplens.org/datasets/movielens
https://github.com/sidooms/MovieTweetings/tree/master /recsyschallenge2014
trust relationships among users

https://www.librec.net/datasets.html

friendship relations among users
https://www.cse.cuhk.edu.hk/irwin.king.new/pub/data/douban

dataset is officially retired, but still used in publications

of user feedback sources such as different categories of implicit transaction traces (Zanker et al.,
2007; Zanker and Jessenitschnig, 2009b) and on the enrichment of user preferences from social
relationships.

5 Summary and Further Reading

Summary and Outlook This chapter provided an introduction on the topic of collaborative
filtering with a focus on neighborhood models, since these comparably simple models even today
often serve as the basis for evaluating the more sophisticated methods that will be discussed in
the subsequent chapters.

Due to its introductory nature and the focus on the main underlying problem of finding items
that are relevant for user, many additional academic and practical aspects of collaborative filtering
have not been addressed to a large extent. Additional topics and questions to consider when
designing a CF-based recommendation system include the following and a number of them will be
discussed in later chapters of the book.

e Historically, academic research has focused on the rating prediction problem, which however
seems to be of limited value in practice, where the main goal is to determine item rankings
based on implicit feedback traces as discussed in Chapter ?? of this book. Session-based rec-
ommendations, as briefly discussed in this chapter, are an important area for future research
in a field which is still dominated by research based on datasets where only one user-item
interaction was recorded.

e A general issue when performing offline experiments with historical data in that context is
the question how accurately collaborative filtering can actually predict user tastes, given the
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Table 3: Characteristics of public datasets from different domains.

Dataset Domain Users Items Ratings Scale
Jester1® jokes 73,421 100 4,136,356 [-10, 10]
Jester2® jokes 59,132 140 1,761,439 [-10, 10]
Jester3® jokes 50,692 140 1,728,847 [-10, 10]
Book-Crossings  books 278,858 271,379 1,149,780 [1, 10]
(BX)"

ISL (Views-  cigars 1,260 142 18,434 unary
All)e

www.libim- dating 135,359 168,791 17,359,346 [1, 10]
seti.cz?

Retailrocket® e-commerce 1,407,580 unary
Scholar recs’ academia 50 100,531

YOW? news 24 5,021 10,010  multidim.
Epinions multiple 40,163 139,738 664,824 [1, 5]
(665K)"

Amazon multiple 6,643,669 2,441,053 34,686,770 [0.5, 5]
reviews?

last.fm/ music 358,868 292,375 17,535,655 unary
0SDC music 1,000,000

Remarks and links for download
@ http://eigentaste.berkeley.edu/dataset

unary, demographic

http://www2.informatik.uni-freiburg.de/~cziegler /BX

search & purchases
http://isl.ifit.uni-klu.ac.at
gender http://www.occamslab.com/petricek /data
user sessions

https://www.kaggle.com/retailrocket /ecommerce-dataset
f researcher interests

http://www.comp.nus.edu.sg/ sugiyama/SchPaperRecData.html
novelty, readability, etc.

https://users.soe.ucsc.edu/ “yiz/papers/data/Y OWStudy

trust relations

http://www.trustlet.org/epinions.html

textual reviews
https://snap.stanford.edu/data/web-Amazon.html

play counts, demographic

http://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset
tags, artists, track info
https://labrosa.ee.columbia.edu/millionsong/pages/getting-dataset

inherent noise in the data. The discussion that algorithms cannot be accurate beyond a
specific point brought up the concept of a “magic barrier” that is seen as a natural lower

bound for all efforts to optimize an algorithms’ accuracy (Said et al., 2012b).

In many application domains, the effectiveness of a recommendation system can depend on
whether the system is able to explain the reasons for its recommendations (Tintarev and
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Masthoff, 2011; Friedrich and Zanker, 2011; Nunes and Jannach, 2017), in particular when
the goal is to design fair, accountable, and transparent systems.

e When it comes to online choice situations and the decisions users make (Chen et al., 2013) a
myriad of different factors like position biases, decoy and framing effects (Teppan and Zanker,
2015) or the characteristics of the rating summary statistics (Coba et al., 2018) have been
shown to measurably influence the choices users make, which are mostly not (yet) considered
in actual algorithms.

e From a research perspective, the reproducibility of the obtained research results is still lim-
ited in many cases despite the existence of public datasets and recommendation libraries
(Ekstrand et al., 2011; Said and Bellogin, 2014; Beel et al., 2016; Coba and Zanker, 2017).
These topics will be discussed in Chapter 77.

e Finally, from a societal perspective, collaborative filtering mechanisms could fracture the
global willage into tribes — a point that was already raised in the original work of Resnick
et al. (1994) — and thus exhibit a certain tendency of reaffirming users in their beliefs and
creating a filter bubble around them (Pariser, 2011). Such societal implications were not
discussed so far to a large extent in the research community and represent another area
where research in the field has to go beyond computer science.

Further Reading There are several highly cited works on collaborative filtering that are marking
milestones of the topic like the early work on user-based automated CF (Resnick et al., 1994)
in an application domain (i.e., netnews) that was initially mainly addressed with content-based
techniques. The proposition of an item-based neighborhood (Sarwar et al., 2001) and its adoption
by Amazon (Linden et al., 2003) was another step into a direction towards the wider adoption
of CF techniques. This obviously necessitated methodological questions about the evaluation of
collaborative filtering systems as they had been addressed early in this seminal paper of Herlocker
et al. (2004). Another important milestone for the development of the topic was the Netflix
challenge and the development of many variants of scalable matrix factorization techniques, where
the reader is, for instance, referred to Koren and Bell (2015) and later chapters.

Another early seminal article of Herlocker et al. (2000) addresses issues of algorithmic trans-
parency and accountability by providing explanations, i.e., additional information about the recom-
mendations and how they were derived. Later, due to the maturing of the field, a first introductory
textbook appeared Jannach et al. (2011) that provides a comprehensive reference on collaborative
filtering and its relation to other recommendation paradigms like content-based and knowledge-
based techniques. Since then, even more encompassing literature like the handbook on RS with
chapters on advancements in collaborative filtering algorithms (Koren and Bell, 2015) and their
evaluation (Gunawardana and Shani, 2015) have been published. Finally, a recent article chal-
lenges the traditional problem formulation of collaborative filtering as a matrix completion task
and advocates to also consider the user interaction and the optimization of conversational moves
over time into the problem formulation (Jannach et al., 2016b).
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