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Scholars in algorithmic recommender systems research have developed
a largely standardized scientific method, where progress is claimed by
showing that a new algorithm outperforms existing ones on or more
accuracy measures. In theory, reproducing and thereby verifying such
improvements is easy, as it merely involves the execution of the
experiment code on the same data. However, as recent work shows, the
reported progress is often only virtual, because of a number of issues
related to (i) a lack of reproducibility, (ii) technical and theoretical flaws,
and (iii) scholarship practices that are strongly prone to researcher
biases. As a result, several recent works could show that the latest
published algorithms actually do not outperform existing methods
when evaluated independently. Despite these issues, we currently see
no signs of a crisis, where researchers re-think their scientific method,
but rather a situation of stagnation, where researchers continue to focus
on the same topics. In this paper, we discuss these issues, analyze their
potential underlying reasons, and outline a set of guidelines to ensure
progress in recommender systems research.

The central components in any recommender system are the algorithms that
determine which items will be shown to individual users based on specific contexts.
Correspondingly, a core topic of recommender systems research lies in the
continuous improvement of these algorithms. Early research from more than a
quarter-century ago relied on comparably simple algorithms like nearest-neighbor
heuristics [Resnick et al 1994]. Since then, increasingly more complex machine
learning approaches were proposed, from linear models, to matrix factorization
techniques, to the latest deep learning models that we see today
[Koren 2008, Ning and Karypis 2011, He et al. 2017, Wu et al. 2019]. Although the
type of problems covered by the research has gradually expanded over the years,
the classical rating prediction and top-N recommendation problems still attract
most of the attention and the research community has developed a seemingly
standardized way of operationalizing these problems. In almost all published
research, algorithms are compared through offline experiments on historical data.
In such experiments, progress is claimed if a new algorithm is better in predicting
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held-out data than previous ones in terms of measures such as RMSE, Precision,
Recall, MAP, or NDCG.

Given the huge amount of published research works over twenty-five years and
the agreed-upon standards for conducting experimental research, one would
certainly expect to observe continuing and strong progress in this area. This should
particularly be the case because the majority of algorithms papers claim to improve
the state-of-the art. However, a number of scholars repeatedly voiced concerns
regarding this progress over the years. Ten years ago, for example,
[Ekstrand et al. 2011], found it ‘‘[...] difficult to reproduce and extend recommender
systems research results.’’ Later, in 2013, a workshop on reproducibility and
replication was held in conjunction with the ACM Conference on Recommender
Systems. In that context, [Konstan and Adomavicius 2013] observed that the
community faces a situation of limited progress, in particular because of a lack of
rigor and problematic evaluation practices. Related phenomena were investigated
in more depth in [Beel et al. 2016]. Here, the authors not only found that the
recommender systems community ‘‘[...] widely seems to accept that research results are
difficult to reproduce.’’. Their experiments also showed that minor variations in the
evaluation setup can have significant effects on the observed outcomes.

In our own past works, we benchmarked more than twenty of the most recent
deep learning (neural) methods against a set of non-neural algorithms, most of
them published many years earlier. Very surprisingly, these studies showed
that---except for a very small set of experimental configurations---the latest neural
methods, despite their computational complexity, were almost consistently
outperformed by long-known existing methods, see
[Ferrari Dacrema et al. 2019, Ferrari Dacrema et al. 2021, Ferrari Dacrema et al. 2020a]
and [Ludewig et al. 2020]. In several cases, even nearest-neighbor techniques
developed 25 years ago were better than the latest machine learning models. These
observations were made both for the traditional top-N recommendation task and
for more recent session-based recommendation scenarios. These findings, which
were reproduced and confirmed also by other researchers
[Rendle et al. 2020, Kouki et al. 2020, Sun et al. 2020], indicate that we are facing
major issues, which may prevent us from truly moving forward as a field.

Furthermore, our studies revealed that the reproducibility of existing works is
actually not high. In the context of the works presented in
[Ferrari Dacrema et al. 2019, Ferrari Dacrema et al. 2021], for example, we found
that about 55% of the papers published at top-level conferences could not be
reproduced based on shared code and data, nor by contacting authors for help and
clarification. Put differently, for 55% of the papers the verification or falsification of
the made claims---which is a central element of any scientific research---is almost
impossible.

All in all, it seems that algorithms research is showing signs of stagnation, where
constantly new models are proposed, but where the claimed improvements ‘‘don’t
add up’’, as observed previously in the domain of information retrieval
[Armstrong et al. 2009, Yang et al. 2019]. Various reasons contribute to this
phenomenon. Researchers for example sometimes compare their new methods to
existing methods (baselines), which are too weak in general or which are not
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properly tuned. Furthermore, the fact that researchers are generally flexible
regarding their experimental designs in terms of baselines, datasets, evaluation
protocol, and performance measures may easily lead to researcher bias, where
algorithm designers may only look for evidence that supports the superiority of
their own method. Unfortunately, despite the existing evidence of the problem, we
do not observe clear signs of a crisis yet, where researchers would re-think their
methodological approaches. In contrast, with the current boom of AI and machine
learning research, even more algorithms are published every year that rely on
research practices that are only partially suited to demonstrate progress.

This paper aims to stimulate a discussion on the lack of progress in some areas of
research on recommender systems. While supporting the points described here, we
do not question the overall quality of research in recommender systems: in many
aspects, the community has advanced far beyond what we had achieved a decade
ago. Also, the bad practices identified here are not specific to any individual or
institution. We made such mistakes by ourselves, but by making researchers more
aware of them, we aim to avoid them in the future.

In the remainder of the paper, we first discuss the issues of today’s research
practice in machine learning applied to recommender systems. We then look at the
potential underlying reasons for the observed phenomena. Finally, we sketch a
number of ways forward to increase the reproducibility of our research and ensure
progress in the future.

The Problems

According to our observations, it is not one single problem that leads to the
apparent stagnation, but multiple issues that can all contribute to a lack of progress:

• Lack of reproducibility: If a work has never been reproduced---either because
it is not reproducible or because the research community never attempted to
reproduce it---its claimed gains can neither be verified nor denied, and as
such, any progress described in the work cannot be considered reliable.

• Methodological issues: Some works exhibit experimental flaws that produce
non-existent gains over state-of-the-art approaches; examples are the
adoption of weak baselines, or the leakage of testing information into the
training process.

• Theoretical flaws: A few works describe new methods based on assumptions
that are not verified, neither theoretically nor empirically.

Lack of Reproducibility

Reproducibility in research on recommendation algorithms is important because it
is the only tool for the research community to ensure the correctness of an
empirical study. A reviewer cannot guarantee that the gains reported in an
empirical paper are correct. Exceptions are, for instance, theoretical studies, where
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mathematical properties of new models can be formally proved. Reproducibility
ensures transparency and creates the possibility for the research community to
confirm or refute what is stated in an empirical paper. Reproducibility can only
work as a tool for verifying the correctness of claimed empirical results if two
requirements are met: (i) papers must be reproducible and (ii) researchers must
reproduce previous empirical results before relying on them for further progress.

According to the study by [Gundersen et al. 2018], the vast majority of empirical
works in AI in general is not well documented and thus not reproducible. Given
the inconsistent use of the terms reproducibility and replication,
[Gundersen and Kjensmo 2018] define reproducibility as the ‘‘[...] ability of an
independent research team to produce the same results using the same AI method based on
the documentation made by the original research team.’’ Moreover, they define three
levels of reproducibility, where level R1, termed Experiment Reproducibility, refers
to a situation when ‘‘[...] the execution of the same implementation of an AI method
produces the same results when executed on the same data.’’ In the other two levels of
reproducibility, R2 and R3, independent researchers can either (i) obtain the same
results for the same data using an alternative implementation, or (ii) obtain the
same results using an alternative implementation on different data. R1 is thus the
weakest level, as it does not assess the sensitivity of the AI method to
implementation details, nor does it assess the ability of the method to generalize
under different experimental conditions. In the rest of this discussion, whenever
we talk about reproducibility, we refer to level R1 as defined by
[Gundersen and Kjensmo 2018], unless differently specified.

Research in recommender systems suffers from the same problems as general AI.
In our previous studies [Ferrari Dacrema et al. 2019, Ferrari Dacrema et al. 2021],
we systematically scanned top-level conference series such as KDD, IJCAI or SIGIR
for algorithmic works on the traditional top-N recommendation problem
[Cremonesi et al. 2010]. As mentioned above, less than 50% of the works were
reproducible despite the high quality expectations for such conferences. On a
positive note, the observed level of R1 reproducibility, which requires that code
and data are shared by researchers, is much higher than in the study on general AI
research, where [Gundersen and Kjensmo 2018] for example found that the
method code was only shared in 8% of the cases.

Note that sharing the method code, i.e., the implementation of a
recommendation machine learning model, and the used data is not necessarily
sufficient to ensure R1 reproducibility. In our studies, we found that sometimes
researchers shared some code, but the code was limited to a skeleton of the method
and not executable. Furthermore, in the majority of the cases, no code was provided
for data preprocessing, hyperparameter tuning, or for running the experiment
including the compared baselines. The code of the baseline methods was actually
missing in the majority of the cases. As a result, it remains difficult to understand
what was done exactly in the experiment. Ultimately, any gains that are observed
for a new method might, at worst, be the result of an incorrect implementation of
the baseline methods. Often, also important pieces of information regarding the
used hyperparameters, hyperparameter ranges or random seeds are missing in the
provided documentation, see also [Henderson et al. 2018].
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In our own studies, we also observed that almost all researchers implement their
own code for the experimental evaluation. Before deep learning became popular, a
number of libraries for the reproducible evaluation were frequently used, such as
LIBREC or MYMEDIALITE [Guo et al. 2015, Gantner et al. 2011], which ensured that
the evaluation procedures were inspected and quality-assured by more than one
researcher. As a result of the constant re-implementation of evaluation code,
technical mistakes and inconsistencies among evaluation methodologies are
probably now more common.

As a result of their analysis of more then 400 papers, [Gundersen 2020] points
out that AI, like other scientific disciplines such as psychology, is affected by a
reproducibility crisis. When interpreting a crisis positively, i.e., as a turning point,
there is hope that the situation improves. Actually, [Gundersen and Kjensmo 2018]
found some patterns of improvement between 2013 and 2016 in terms of R1
reproducibility (but not in the other dimensions). This indicates that researchers
increasingly share their code, and the findings of our own studies corroborate this
development.

Methodological Issues

The second important dimension that may prevent us from obtaining true progress
is related to methodological issues. We identified three main types of issues. The
first set of problems is related to bad evaluation practices and other technical
mistakes. The second set of problems is due to the choice of weak baselines for the
empirical comparison with the proposed methods. The third set of problems can be
attributed to the fact that the majority of published research works has no explicit
research questions or hypotheses [Gundersen and Kjensmo 2018].

Information Leakage

In machine learning, information leakage happens whenever information from the
testing set is used in the training process. This type of information is not expected
to be available at prediction time, causing evaluation metrics to overestimate the
predictive accuracy of the method. Information leakage can occur at different
levels, some obvious and easy to avoid, others more devious and difficult to detect.

One of the most common information leakage we have encountered in our
analysis concerns early stopping
[Ferrari Dacrema et al. 2019, Ferrari Dacrema et al. 2021]. Early stopping should
be implemented by evaluating the stopping criteria on a validation set different
from the test set. However, 50% of the works we have analyzed evaluate the early
stopping criteria on the test set itself, thus overfitting the test set on the stopping
criteria. Even more serious, some works report results in which, for each metric
and cutoff, the best value is computed on the testing set and each value
corresponds to a different epoch. In all the affected papers, this information
leakage occurs only for the newly proposed methods but not for the baselines.

An equally problematic issue was recently reported in the analysis by
[Sun et al. 2020] who found that 37% of their examined works tuned the
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hyperparameters of their new method on the test set. If such a procedure was
admissible, it is trivial to come up with an algorithm for implicit feedback that uses
a parameter for each user-item combination and then ‘‘learns’’ the best setting for
this variable by looking at the test set.

These two examples of information leakage are easy to detect and control, and
authors should be able to take care of them without too much effort. Other types of
information leakage are more devious and concern the splitting of datasets into
training, validation and test sets.

Probably the most often used experimental design in the entire literature on
recommendation algorithms is to predict held-out ratings on one of the many
publicly available datasets containing implicit or explicit ratings. For the
evaluation, the rating dataset is typically randomly split into a 80% training and
20% test split. Such a random data split however leads to the effect that the training
data contains future data to predict a past event1, see also [Ji et al. 2020]. Consider,
for instance, the popular MovieLens dataset. If the training data by chance contains
a highly positive ratings by a user for ‘‘Rocky II’’ and ‘‘Rocky III’’, the model might
quite easily learn from the data that the user will also rate ‘‘Rocky I’’ highly. As a
result, the observed prediction performance in such an experiment might be higher
than when applied in practice, where it is probably much more difficult to guess if
a user will like ‘‘Rocky I’’ when it is released.

The above problems concerning information leakage are part of a wider set of
problems relating to evaluation methodologies, problems which we have identified
in many works and which are sometimes significant, sometimes of little relevance.
In several cases, the selection of negative samples was problematic, leading to a
situation in which a different number of negative samples was used for different
users. In other cases, we found that researchers implemented accuracy measures in
uncommon ways. In one of the major cases, we found that the train-test split
provided by the researchers was not documented, not reproducible and not
consistent with any of the best practices about dataset partitioning. In all of these
cases, the reported gains over baselines vanish when replicating the experiments
with more conventional approaches.

Weak baselines

One of the most common problems that leads to an illusion of progress in research
on recommender systems is related to the use of weak baselines. In some works the
baselines are inherently weak, in other works the baselines are potentially stronger
than reported, but are not adequately tuned for the problem under consideration.
[Lin 2019] and [Yang et al. 2019], while recognizing the progress made by
transformer models for certain tasks of document retrieval, observed that it is not
rare to find articles comparing neural ranking algorithms only against weak
baselines, raising questions regarding the empirical rigor in the field.
[Rendle et al. 2019] found that many algorithms that were published between 2015
and 2019 actually did not outperform longer-existing baselines, when these were
properly tuned.

The apparent lack of progress can be attributed to two factors: the choice of the
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baselines and the lack of proper optimization of the baselines. Ultimately, these
phenomena can lead to a cascade effect, where only the most recent models are
considered as the state-of-the-art even though they actually do not outperform
existing models.

Choice of baselines. Hundreds of recommendation algorithms may have been
designed over the past decade, and determining what represents the
state-of-the-art is inherently difficult, because there is actually no ‘‘best’’ algorithm
in general, as will be discussed below. Another observation is that, in many works,
only the latest complex machine learning algorithms are considered as relevant
baselines. For instance, in [Ferrari Dacrema et al. 2021] it was observed that more
than 80% of the papers on deep-learning recommender systems use other deep
learning algorithms as the only baselines. In that context, a key question is whether
a specific family of algorithms is the best available to solve the problem addressed
in the paper, or whether there are other families of better algorithms to use as
stronger baselines. Simpler and slightly older methods are often ignored as
possible baselines, although some of them have been published in top-level venues
and often lead to strong results. To some extent, this phenomenon might also be a
result of our publication process, where reviewers might mainly ask for the
consideration of the latest models as baselines, thereby implicitly suggesting that
older approaches are outdated.

Lack of proper tuning of baselines. Even in cases when suitable baseline
algorithms are selected in a comparison, a frequently occurring issue is that the
baselines used in the experimental evaluation are not properly tuned. This is
probably the most common issue observed in our and other studies, and is not
specifically tied to recommender algorithms. Researchers apparently invest
significant efforts in tuning the hyperparameters of their own new method but do
not always pay the same attention to the tuning of baselines. One commonly found
mistake is that of authors using hyperparameter settings reported as optimal in a
previous article, although these settings refer to experimental conditions other than
those currently considered.

Lack of Explicit Research Questions

[Gundersen and Kjensmo 2018] report that less than 10% of the AI papers
analyzed in their study contained an explicit statement regarding the addressed
research goals and objectives. Similar trends exist in the recommender systems
literature, where the research goal is only stated implicitly. Usually, the implicit
goal is to create better recommender systems by making better relevance
predictions, i.e., to obtain higher accuracy.

A common claim in most algorithmic research works in recommender systems is
that ‘‘our method significantly outperforms the state-of-the-art.’’ Usually, these
improvements are attributed to a novel model that better captures certain patterns
in the data and/or the creative consideration of existing or additional types of
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information. These improvements are then evidenced by reporting empirical
results in which the new model is benchmarked against a set of baselines
algorithms. Unfortunately, the way the experiments are designed cannot inform us
if a method improves the state-of-the-art as claimed. The observed performance
and ranking of algorithms can depend on a multitude of factors, including the
characteristics of the used datasets, the chosen performance measures, the cut-off
length for the measures, data pre-processing, specifics of the evaluation protocol
like the data splitting procedure, or even the metric sampling approach
[Krichene and Rendle 2020, Rossetti et al. 2016].2 For all these aspects, no
standards exist, and recent papers highlight that researchers use all sorts of
experimental configurations in their experiments, often without a theory-guided
justification for their choices [Sun et al. 2020, Ferrari Dacrema et al. 2021].
Therefore, what can be shown in a paper is that some proposed model outperforms
existing approaches in very specific experimental settings, many of which can be
arbitrarily chosen by the researcher. One possible consequence of this freedom is
that researchers may be subject to psychological biases, most importantly a
confirmation bias. In such a situation, researchers may unconsciously seek for
evidence that supports their hoped-for outcomes, i.e., that their new model works,
and this psychological phenomenon might guide their search for corresponding
experimental configurations.

Another problem related to the lack of explicit research questions is the failure to
identify the sources of empirical gains, as reported by
[Lipton and Steinhardt 2019]. In many works, together with a new sophisticated
algorithm, the authors propose a number of other empirical and apparently minor
contributions, such as optimization heuristics, clever data-preprocessing, or
extensive hyperparameter tuning. Too often, just one of the minor contributions is
actually responsible for the performance gain, but the lack of proper ablation
studies give the false impression that all of the proposed changes are necessary.

Theoretical Flaws

Besides reproducibility and methodological problems, our field is sometimes also
plagued by theoretical issues.

Using Unsuited Models for the Data

Research on novel recommendation algorithms sometime involves speculations
that do not properly undergo scientific scrutiny. For instance, in recent years,
researchers have explored the use of convolutional neural networks (CNNs) for
recommendation problems. The application of CNNs relies on the assumption that
there is some form of relationship between neighboring or nearby data elements.
One specific idea that was explored in at least three recent papers---all presented at
IJCAI conferences---is to combine latent factor models (embeddings) with the
power of CNNs. The underlying assumption in these papers is that there are
correlations in the latent factor models. To consider these correlations in the
models, the authors propose to apply convolutions over user-item interaction maps
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that are obtained from the outer product of their embeddings. According to the
results presented in the respective papers, CNNs have helped to significantly
improve recommendation accuracy.

When looking closer at how the user-item interaction maps are usually created,
one can however observe that the order of the elements in the embeddings carries
no semantic meaning. Therefore, any performance gain observed through the
application of CNNs cannot be attributed to correlations between nearby elements,
but only to the fact that neural networks act as universal approximators. As shown
by [Ferrari Dacrema et al. 2020b], perturbing the order of the elements in the
embeddings, as expected, has no effect on recommendation accuracy. These
findings do not rule out that CNNs can be useful for various recommendation
tasks. In the mentioned cases, however, the claims made in research papers are not
theoretically valid. Overall, this points to a more general issue in today’s research
practice in applied machine learning, where the goal of improving prediction
accuracy is very often not accompanied by the questions ‘‘What worked?’’ and
‘‘Why?’’, see also [Lipton and Steinhardt 2019]. In general, while it might often be
difficult to theoretically prove how exactly a particular model contributes to the
overall performance, suitable ablation studies may usually help to discover
potential issues empirically.

Unsuited Experiment Designs for the Research Goals

The experimental analyses reported in many papers deviate significantly from the
claimed or implicit research goals. The probably most typical example are research
papers that propose new algorithms for implicit-feedback recommendation
scenarios. The goal of these research works is to demonstrate that a new model is
better than previous ones at predicting whether a user will like an item or not.
When it comes to the evaluation, it is however not uncommon that researchers take
an explicit-feedback dataset from MovieLens and transform all ratings, including
the negative ones, to positive signals. As a result, what is measured here is how
good an algorithm is at predicting who will rate which item next. This, however, is
almost never the research goal. Likewise, many sequential recommendation
approaches are also based on MovieLens data. Here, the sequence of events is
determined by the timestamp of the rating, which can be days, months, or years
after a movie was watched. Again, in these approaches, researchers predict who
will rate what next.

One could argue that such subtleties are not important because what matters is
the ranking of the algorithms, which would probably be the same when only the
very positive ratings, e.g., those with 4 or 5 stars, would be considered as positive
signals. While the ranking might indeed be the same in some cases, we believe that
it is unimaginable in other scientific disciplines to make claims regarding the
power of a prediction model for a given research question when the underlying
experiment is actually not suited to answer the question. The fact that this seems to
be acceptable in our domain somehow indicates problems regarding rigor and our
scientific method.
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Unreliable Conclusions from Sampled Metrics

Offline evaluation of modern machine learning algorithms can be computationally
demanding when there are many items in the databases. This is in particular the
case when ranking or classification measures are used. To determine such
measures, one has to rank all items in the catalog for each user, which usually
means that relevance scores for potentially tens of thousands of items have to be
computed per user. To avoid this problem, researchers commonly apply an
evaluation procedure where the positive items of a user in the test set---these are
typically not many---are ranked together with N randomly sampled negative items,
i.e., items where no preference (or a negative one) is available for the user.
[Koren 2008] is an early example where this approach was taken, using N = 1000.

This evaluation approach is very common today. However, often much smaller
values for N are chosen, e.g., 50 or 100. Only recently, the question was raised if the
results obtained through such sampled metrics actually correspond to the algorithm
ranking that one would obtain when all items were considered, i.e., when the exact
metric is used. In their analysis, [Krichene and Rendle 2020] showed that the
sampled metrics are inconsistent with their exact version, which means that
statements like ‘‘Recommender A is better than Recommender B’’ cannot be reliably
derived when using such metrics. This finding therefore may have major
implications on what we believed to know about the relative ranking of algorithms,
which is the main focus of almost all published algorithms research.

How Could This Happen?

To recap, other researchers and ourselves have found that in many cases the latest
and more complex machine learning models presented at prestigious conferences
are often not actually better than previously existing methods. Similar observations
were also made for non-neural recommendation methods by [Rendle et al. 2019],
for information retrieval research by [Yang et al. 2019] and by
[Armstrong et al. 2009], and for other areas like time-series forecasting or certain
clinical prediction tasks by [Makridakis et al. 2018] and [Bellamy et al. 2020]. Many
factors might contribute to these phenomena, which are seemingly not tied to
applied machine learning research in recommender systems or to deep learning.
Here, we provide some thoughts and speculations regarding what might have put
us in this unsatisfactory situation.

One quite obvious reason for limited reproducibility is that providing
reproducible artifacts is work-intensive and there is little reward. The code that is
written during the process might have been developed while the researcher is still
learning about the technology, it may contain code and method variants that are no
longer used as they did not lead to success, or contain programming hacks that
were introduced under time pressure before a deadline. Preparing and re-working
all artifacts into a sharable form, including the creation of instructions for
installation and execution, might therefore seem to be a time investment that does
not pay off for the researcher. Furthermore, when the provision of source code is
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strongly encouraged for paper submissions at a conference or even a reviewing
criterion, researchers might only prepare a minimal set of artifacts for sharing, i.e.,
the core code of their method but not the other material that would be needed to
reproduce the experiments. Not being able or willing to invest more time in
reproducibility or in systematically optimizing the baselines may also have to do
with our academic incentive system and a corresponding publication pressure. An
additional reason for not sharing the code might lie in a certain fear by researchers
that their code contains mistakes or methodological issues. If such a mistake is
detected, this may harm the reputation of the researcher, in particular if a found
mistake invalidates the claimed findings. Finally, experimental activities, in
particular programming, might often be carried out by young researchers who may
not be fully aware of the possible impact on the results when they do not
meticulously follow best evaluation practices. For instance, they might not be
aware of subtleties that can lead to information leakage.

Considering the above-mentioned methodological issues and bad research
practices, it seems that there are too few incentives (or too little pressure) in our
community, e.g., from reviewers, program chairs, and journal editors, to improve
these aspects. The general research methodology seems agreed-upon, and it
appears that much more focus is put on the details of a fancy new technical
contribution than on double-checking that the research methodology is appropriate
to support a claim. For example, not reporting if and how the baseline methods
were optimized is common; not reporting results of statistical significance tests is
not an issue; not justifying why certain datasets, measure or cutoffs are used for the
evaluation is acceptable. Finally, formulating a specific research question or laying
out hypothesis, which are key pillars in scientific research elsewhere, is less than
common.

In some ways, our research approach is sometimes seemingly boiling down to a
leaderboard-chasing culture, where the goal is to obtain an accuracy improvement
on some dataset, no matter where the improvements come from or whether they
would actually matter in practice. In particular this latter aspect was discussed
years ago by [Wagstaff 2012] who advocated that we should more often focus on
‘‘machine learning that matters’’. Symptoms of machine learning research that has
limited impact in practice include a hyper-focus on benchmark datasets and
machine learning competitions or a hyper-focus on abstract accuracy measures,
and a limited connection to real-world problems. A recent analysis of the (often
limited) correspondence of the offline and online performance of recommendation
algorithms can be found in [Krauth et al. 2020], see also [Rossetti et al. 2016] and
[Cremonesi et al. 2013].

Furthermore, the academic incentive system and publication culture focuses on a
‘‘machine learning contribution’’, but does not reward researchers enough that they
perform all other activities that are needed to develop something that has impact in
the real world. Similar observations were made more recently by [Kerner 2020],
who found that AI research too often considers that real-world applications are not
relevant. While this is probably a general issue in AI---see [D’Amour et al. 2020] for
a discussion of the often poor performance of machine learning models when
deployed in practice---it is particularly troubling in the context of recommender
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systems research, which by definition is oriented towards a particular and very
successful application of machine learning in practice.

Finally, some of the observed problems might also stem from the current
situation, where conferences receive thousands of submissions, and where it might
be very challenging to recruit a sufficient number of senior reviewers that would be
required to critically evaluate the research methodology. In our own experience,
early-stage researchers who act as reviewers more often focus strongly on technical
innovation and novel models, and put less thought on evaluation aspects, as the
standards for evaluation seem agreed-upon and of secondary relevance.

Recommended Action

What follows are a number of suggestions based on our personal experiences on
what we, as a community, could do to counter these trends, besides simply
suggesting that authors should refrain from today’s bad practices.

Best Practices for Reproducibility

Regarding reproducibility in AI in general, [Gundersen et al. 2018] provide a set of
best practices, recommendations, and a detailed checklist for authors. In the
following, we summarize the main points and add specific aspects that are relevant
in the context of recommender systems research.

According to the checklist of [Gundersen et al. 2018], the data used in
experiments should be publicly available, be documented, maybe include license
information, and should have a DOI or persistent URL attached. Since in
recommender systems research the raw data is very often preprocessed, e.g., to
reduce the sparsity, authors should also publicly share the preprocessed data.
Furthermore, sharing the used data splits and the negative samples used in the
experiments can be very helpful to ensure reproducibility even when the splitting
and sampling procedures are described in the paper.

The requirements of public accessibility, documentation, licences and permanent
reference hold for the method code as well. Moreover, the code (and the data)
should be provided in a way that re-running the experiments reported in the paper
is as easy as possible. This requires that all code is shared: the code of the new
method, the baselines code, the code used for data preprocessing, the one used for
hyperparameter optimization, and the code used for evaluation. Moreover, the
code should be accompanied with relevant instructions regarding software or
hardware requirements, installation scripts, and prepared scripts and configuration
files to run the experiments. In case a complex software environment is required to
run the experiments, the provision of a Docker image or similar formats is
advisable. In terms of additional documentation that might not fit into a research
paper, authors should provide their optimal hyperparameter settings and the
ranges they have explored on a validation set.

Note that (standardized) benchmarks are often considered a possible cure to many
of the mentioned problems. In the best case, the existence of such benchmarks
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could relieve researchers from the burden of running all previous baselines, and
would just have to report their new results. Making a dataset publicly available is,
however, not enough to achieve this goal. It requires that a specific train-test split is
provided and that the exact evaluation procedure, including the metrics, is known.
In the best case, the code to be used for the evaluation should be standardized as
well, because small implementation details can make a difference. Besides these
challenges, the use of benchmark problems can in general be a double-edged
sword, where researchers focus too much on a very specific known problem setting
and hyperparameter tuning, which might prevent them to explore other and
probably more important research questions.

(1) Data:
Share well documented data, include
1.1 Raw dataset, with meta-data, license information and permanent

link
1.2 Processed dataset, including train, validation and test sets, as used

to obtain the reported results
1.3 Other data samples used in the evaluation, e.g., negative samples

(2) Code:
Share documented code, include
2.1 Code for the proposed method
2.2 Code for the baselines
2.3 Code used for data pre-processing
2.4 Code for hyperparameter optimization
2.5 Evaluation code

(3) Execution Instructions:
Share additional instructions for re-running the experiment
3.1 Hardware and software requirements, including all external

libraries necessary to run the codes
3.2 Installation instructions
3.3 Scripts for installation and experiment execution

(4) Experiment Documentation:
Share additional details of experiment
4.1 Final hyperparameter settings and explored ranges (new method

and baselines)
4.2 Detailed experimental results
4.3 Any additional required artifacts, e.g., configuration files

Table 1: Reproducibility Checklist

On a positive note, we can observe increased awareness in recent years in the
community regarding the potential helpfulness of best practices, research
guidelines and reproducibility checklists, see e.g. [Pineau et al. 2020]. Besides more
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general guidelines, as summarized in Table 1, also more specific best practices for
certain aspects of machine learning research were recently proposed, e.g., in
[Lindauer and Hutter 2019].

Recommendations for Chairs, Editors and Reviewers

With this work, our goal is to make conference chairs, journal editors, and
reviewers better aware of the severity of today’s issues with respect to
reproducibility and methodology. As a first step forward, we believe that more
emphasis on these topics should be placed both in the call for contributions and in
the reviewing process. In particular reproducibility should be a key criterion in
every evaluation of algorithmic contributions. Conference chairs and journal
editors should therefore provide clear guidelines to reviewers on what level of
reproducibility is expected and on how much weight should be given to this aspect
when evaluating a paper.

Certainly, there might be reasons why only parts of the code and the data can be
shared, but these reasons should be well explained. In particular researchers from
industry often face the problem that they are not allowed to share the materials
that they used in their experiments. The involvement of industry in recommender
systems research, with no doubt, is highly important and absolutely necessary to
move our field forward. It might therefore be advisable to create dedicated
opportunities for contributions from industry, where it is clear that these works do
not necessarily meet the needed reproducibility standards.

Regarding dedicated publication outlets, we furthermore encourage the creation
of opportunities to publish reproducibility studies, e.g., in the form of a special
conference track. Correspondingly, the papers submitted to such tracks should be
evaluated differently as regular submissions, where, for example, novelty aspects
are not in the focus.

For reviewers, once they are aware of the existing issues, we expect that they
more often have a closer look at evaluation aspects when assessing a paper. We
speculate that reviewers who work in recommendation algorithms themselves are
more interested in the novelty and the particularities of the proposed technical
approach than in the finer details of the experimental setup. With clear guidelines
provided by the chairs and editors, they can be pointed to additional aspects that
should be asked, e.g., if the work is reproducible or if the chosen experimental
design is suited to answer the research question that is asked in a paper.

Finally, as our machine learning models increasingly become more complex,
some reviewers might be misled into thinking that the complexity of a model is
always positively correlated with its effectiveness. This has probably led to a
certain level of ‘‘mathiness’’, defined as a ‘‘tangling of formal and informal claims’’,
which is observed by [Lipton and Steinhardt 2019] for machine learning research
in general. Instead, the principle of Occam’s Razor should be kept in mind.
Translated to our problem, this means that one should prefer simple over complex
models, provided that they are performing equally well. Today, we unfortunately
still too often observe a self-enforcing pattern, where researchers may intrinsically
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have a certain fondness for complex models and reviewers at the same time ask for
or appreciate these more fancy models.

Recommendations for Researchers and the Community

We believe that today’s issues regarding the lack of reproducibility and progress
observed in our previous studies are mainly related to a lack of awareness and
attention on these topics in our community. In the future, when the community
appropriately rewards and incentivizes the additional efforts by researchers, we
hope that it will be ‘‘natural’’ for researchers trying to ensure that their work is
reproducible and thus verifiable. Providing all artifacts for reproducibility should
in the long run also serve today’s scientific career mechanics, as reproducible work
might be more often used as a basis for innovation and comparisons by other
researchers.

However, to achieve true progress in our field, ensuring reproducibility of new
algorithms is not enough. Accuracy optimization for top-N recommendation tasks
has been done for about twenty-five years now, with a large fraction of research
works using movie rating datasets for the evaluations. The question has been
raised before, if there is a ‘‘magic barrier’’ where we cannot improve our
algorithms anymore, e.g., because of the natural noise in the data
[Said et al. 2012, Amatriain et al. 2009]. Moreover, there are various works that
indicate that these usually slight improvements in accuracy obtained in offline
experiments might not matter in practice, and a number of user studies suggest
that higher accuracy does not correlate positively with the users’ quality
perceptions [Cremonesi et al. 2012, Krauth et al. 2020]. In recent years, we might
have expanded our research operationalization from matrix completion to
alternative scenarios like session-based or sequential recommendation, and we
have explored questions of recommendation diversity and novelty. The problems
of offline evaluations however remain the same.

To achieve true progress, we believe that researchers in recommender systems
should more often focus on problems ‘‘that matter’’, in the sense of [Wagstaff 2012].
In our opinion, this means that, in principle, we should more often first work with
specific problems in an application domain---ultimately recommender systems
research is an applied discipline---and only then try to generalize. We can no
longer try to solve the problem of finding ‘‘the best algorithm’’, because it does not
exist. Whether an algorithm is preferred over another one basically cannot be
judged in isolation, because we have to take into account what the purpose of the
recommendations is in the first place [Jannach and Adomavicius 2016]. Today, we
mainly measure what is easy to measure, i.e., accuracy in offline experiments, but
this seems to be too limited to make most of our research impactful in practice. We
therefore highly encourage researchers to leave established paths and focus on
more interesting and relevant problems, see, e.g., [Jannach and Bauer 2020] for
potential ways forward.
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Conclusion

A number of recent studies indicate that research in recommendation algorithms
has reached a certain level of stagnation. In this paper, we have reviewed the
possible reasons that lead to the effect that many new algorithms are published,
even at top-level outlets, for which it is ultimately not clear if they really improve
the state-of-the-art. Among the most important causes, we have identified limited
reproducibility, weak baselines, improper evaluation methodologies and lack of
explicit research questions. Furthermore, we outlined a number of research best
practices to avoid the ‘‘phantom progress’’ due to low levels of reproducibility and
the use of improper methodologies. Ultimately, however, we do not only need
better research practices, but we have to re-think how we do algorithms research in
recommender systems, where we have to shift from a hyper-focus on accuracy in
offline experiments or on already well-explored problems, to questions that really
matter and have an impact in practice.

Notes

1[Jannach et al. 2016] used the term ‘‘postdict’’.

2Recently, fundamental questions were also raised by [Ferrante et al. 2021] and
others regarding the validity of experimental results that are obtained with common
information retrieval measures like Precision and Recall, which are also commonly
used in recommender systems evaluations.
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