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Abstract

A variety of automated software fault prediction techniques was proposed in recent years,
in particular for the important class of spreadsheet programs. Software fault prediction
techniques commonly create ranked lists of “suspicious” program statements for developers
to inspect. Existing research, however, suggests that solely providing such ranked lists may
not always be effective. In particular, it was found that developers often seek for explanations
for the outcomes provided by a debugging tool and that such explanations may be key for
developers to trust and rely on the tool. Research on how to explain the outcomes of fault
prediction techniques, which are often based on complex machine learning models, is scarce,
and little is known regarding how such explanations are perceived by developers. With
this work, we aim to narrow this research gap and study the perception of different forms of
explanations by spreadsheet users in the context of a machine learning based fault prediction
tool. A between-subjects user study (N=120) revealed significant differences between the
explored explanation styles. In particular, we found that well-designed natural language
explanations can indeed help users better understand why certain spreadsheet cells were
marked by the debugging tool and that such explanations can be effective to increase the
users’ trust compared to a black box system.
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1. Introduction

Over the last decades, a multitude of automated techniques were proposed that aim
for supporting software developers prevent, localizing, or even correcting faults in their
programs. Software fault prediction is a particular class of such approaches, which aim
to pinpoint fault-prone parts of a program as early as possible, ideally even before system
testing. Technically, the prediction task is often framed as a supervised machine learning
problem, where software-related metrics in combination with past fault data are used to
estimate the likelihood that a given part of a software artifact is faulty, see [1] for a survey. In
recent years, such learning-based fault prediction methods—as well as various other advanced
debugging techniques— were also successfully applied to the important class of spreadsheet
programs [2]. Nowadays, spreadsheet programs are used widely in organizations for various
forms of data analysis and decision-making, and it is not uncommon that business-critical
decisions are based on calculations in spreadsheets. Thus, appropriate quality assurance
techniques for spreadsheet programs—which are the focus of our work—are of high practical
importance.2
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Today’s research on automated fault prediction and fault localization—both for spread-
sheets and traditional programs—is largely based on data-based (“offline”) experiments,
where machine learning models are trained and assessed without involving humans in the
evaluation process. The central task in such machine learning approaches is to predict the
likelihood of a certain part of a given software, e.g., a statement in a program or a formula in
a spreadsheet, being faulty. Ultimately, the main outcome of such techniques is typically an
ordered list of program elements that are considered suspicious. One fault prediction tech-
nique is then considered better than another one if it (a) more often ranks the true faults
higher in this list and (b) includes fewer “false alarms” at the top places. Both aspects
can be evaluated with common accuracy and ranking metrics from the field of information
retrieval, e.g., with precision, recall and Mean Reciprocal Rank [3].

While such an evaluation approach is widely used in the academic literature, Parnin
and Orso [4] questioned if the underlying assumptions of this approach hold, and if we
can be sure that automated debugging tools are helping programmers in practice. One
main outcome of their studies was that some central assumptions may not always hold in
practice. Programmers for example may not necessarily inspect a given list of potentially
faulty statements strictly in order; also, they might not identify a statement as being faulty,
even though it is presented as potentially faulty by the debugging tool. Different remedies to
these issues were proposed, including in particular the use of alternative evaluation metrics,
support for program comprehension, the provision of ecosystems that support the entire
toolchain, and more user studies [5].

In the context of program comprehension, one important direction to improve the prac-
tical usefulness of automated debugging techniques lies in the provision of explanations. In
a recent study on defect prediction methods, Wan and colleagues [6] found that several re-
spondents of their survey explicitly mentioned it to be a desirable feature if the tool could
explain “[. . . ] why an error is considered an error” or “[t]ell my why certain lines are po-
tentially wrong”. In this context, a largely open question is how a system should explain
such aspects to its users: What kind of information should be displayed? How much detail
should be presented? Should the information be conveyed through natural language or some
form of visualization?

In this work, we investigate these questions for the particular case of spreadsheet debug-
ging. Specifically, we investigate different forms of explanations for the machine-learning-
based spreadsheet debugging approach proposed in [7]. Given a spreadsheet as input, this
debugging technique returns a “suspiciousness” score for each formula in the spreadsheet.3

The data-based experiments in [7] indicate that the method is highly effective to identify
faults in spreadsheets. Continuing this research, our present goal is to explore in which ways
explanations can help to further increase the usefulness of the automated fault prediction
method. In particular, we aim to assess to what extent different forms of explanations help
developers to understand why a given formula is faulty. Moreover, we are interested in the
effects of providing explanations to spreadsheet users4 in terms of the quality perception of
the debugging tool, e.g., perceived usefulness, usability, transparency, and trust. Therefore,
the main research questions in this work are as follows.

• RQ-1: Can explanations for individual fault predictions help spreadsheet users obtain
a better understanding of the spreadsheet program and its faults?

• RQ-2: Can explanations help to improve the quality perception of the debugging tool
by spreadsheet users and the trust in the system?

3We note here that we focus on faulty formulas in this work. Extending the scope to erroneous input
data or constants is possible in principle. For more general discussions of faults (errors) in spreadsheets, we
refer to [8, 9].

4In the context of our work, we use the term “spreadsheet users” to refer to people who use spreadsheet
on a regular basis, who understand the basic concept of entering formulas in cells, and who are able to create
or modify spreadsheets by themselves.
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To answer these research questions, we conducted a between-subjects user study (N=120),
where participants were presented with faulty spreadsheets in which several formulas were
highlighted as being suspicious. We then provided different forms of explanations to the
participants and asked them to (a) describe why they think that a given formula might
be faulty and (b) report on their perception of the debugging tool in different dimensions.
The results of our study indicate that providing explanations can indeed be beneficial com-
pared to a black box system both in terms of program comprehension and other quality
dimensions. We also observed that the particular form of explaining matters.

Overall, with our work, we contribute to a better understanding of the value of expla-
nations in the context of automated fault prediction techniques for the class of spreadsheet
programs. To our knowledge, no prior work exists that examines such questions in the do-
main of spreadsheets. To what extent our findings generalize to other types of programs,
however, still has to be explored. While we could merely see spreadsheets as a partic-
ular type of software, one crucial difference to general software development is that the
users and creators of spreadsheets often have no formal education in software engineering.
Moreover, there are typically no systematic testing and debugging procedures implemented
during spreadsheet development, and automated fault localization and debugging support
in today’s spreadsheet environments is still limited. These aspects make the design of the
technical solutions to present explanations to spreadsheet users particularly challenging, be-
cause appropriate and concise ways of conveying the relevant information, e.g., through text
summarizations, visualizations or explanation-by-example [10], must be designed to ensure
the understandability of the explanations for this particular type of users.

On a more general level, our work may also be seen as a contribution to the area of
Explainable AI (XAI), where one main goal is to make the underlying reasoning of an
AI-based system transparent to developers and end users. In the context of automated
fault prediction, explainability turns out to be particularly challenging when the underlying
machine learning models become increasingly complex with the use of modern deep learning
architectures, see [11] for an overview.

The paper is organized as follows. We discuss related work next in Section 2. Our
research methodology and the details of our experimental design are described in Section 3.
In Section 4 we discuss the obtained results and practical implications in detail. The paper
ends with a summary and an outlook on future works in Section 6.

2. Related Work

The related works discussed in this section cover software fault prediction techniques and
the use of explanations in the context of software engineering and in particular debugging.
In the following, we outline recent work on fault prediction, discuss existing studies with
humans in this domain, and elaborate on research dealing with explanations given to users
with the aim of improving usability and trust.

2.1. Software Fault Prediction Methods

In software development and maintenance, we spend a lot of effort that is related to the
detection of failures and the identification of their corresponding root causes. Hence, there
has always been an interest in automating debugging, which aims at identifying those parts
of a program that potentially induce failures as early as possible. For a recent survey on
software fault localization, we refer to [12]. In contrast to regular debugging activities in
practice, software fault prediction, also called software defect prediction, does not require
passing and failing test executions. Instead, software fault prediction utilizes information
regarding programming patterns and metrics for estimating whether or not certain parts of
a program are faulty. In the following, we summarize related research focusing on software
fault prediction only.

We can view software fault prediction as an extension to the checking approach to de-
bugging. According to Ducasse [13], a checking strategy “parses programs and searches
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for language-dependent errors,” where we consider program parts suspicious when they are
not conforming to well-formedness rules or conform to error rules. In contrast to checking,
software fault prediction goes beyond simple classification and assigns suspiciousness values
to potentially faulty program parts. These suspiciousness values should correspond to the
likelihood of faultiness and allow ranking of program parts.

For finding a function that maps programming patterns or metrics to a suspiciousness
value, most recent work on software fault prediction relies on machine learning, e.g., see [14],
where we use information regarding patterns or metrics and their effect on the behavior
to learn the prediction function. A variety of different machine learning approaches has
been used in the past, e.g., neural networks [15], Bayesian networks [16], and association
rule mining [17] among others. There are also several surveys which deal with general
fault prediction [1, 18, 19, 20, 21, 22], and the application of machine learning to fault
prediction [23, 11, 24, 25].

In the context of spreadsheets, Koch and colleagues [2] successfully applied machine
learning for software fault prediction based on metrics. In their paper, the authors compared
different machine learning approaches for predicting the faultiness of spreadsheet cells based
on several metrics. For a survey on known spreadsheet metrics, we refer the reader to [26].

Beyond the spreadsheet domain, there are several studies which evaluate and compare
different fault prediction methods. The most recent studies include the following. Razu
et al. [27] compared several machine learning techniques for fault prediction using well-
known evaluation benchmarks. He and colleagues [28] describe and evaluate an approach for
computing a reduced set of metrics for estimating defects in software. Choudhary et al. [29]
introduced change metrics for software fault prediction. The commonality of these studies
is the use of program collections for determining the prediction accuracy of the underlying
software fault prediction approaches. They do not consider user-related characteristics,
which include the perceived usefulness of predictions.

To the best of our knowledge, there is only little research that considers human-centric
evaluation approaches for automated debugging tools, including [30, 31, 32, 4, 33, 34]. Most
of these papers report results obtained from user studies which either involve students or a
limited number of developers. For spreadsheet debugging, the situation is similar. Papers
dealing with user studies like [35, 36, 37, 38] specifically concentrate on user-related char-
acteristics of one particular tool. The content of this paper is distinct from previous work,
elaborating on the effects of different ways a spreadsheet debugging tool passes explanations
to the user.

2.2. Explanations

In an informal way, an explanation can be seen as a narrative answering the question
of why particular facts (e.g., an event or a decision) are happening. Such a narrative may
explain things in terms of causality, i.e., tracing back the fact to root causes from which we
can deduce the particular fact. Although it is usually the case that one person (i.e., the
explainer) is explaining a decision or event to another person (i.e., the explainee), adding
similar capabilities to engineered systems has been of growing interest recently. This increase
in interest might be due to the fact of increasing automation, which relies more and more
on AI technology. To gain trust in decisions taken by AI, users are often interested in their
origins, which leads to the field of explainable AI (XAI). Miller [39] provides an excellent
discussion on explainability and the need for considering research in philosophy, psychology,
and cognitive science when constructing XAI. In his paper, Miller distinguishes two com-
plementary approaches for AI-based systems: “(1) generating decisions in which one of the
criteria taken into account during the computation is how well a human could understand
the decisions in the given context, which is often called interpretability or explainability; and
(2) explicitly explaining decisions to people, which we will call explanation.”. In this paper,
the context is more related to the first approach, for which we discuss related research in
more detail.
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In the context of software debugging, a widely cited study from Parnin and Orso [4]
questioned the applicability of debugging tool in real life. One of the main implications
from their work is to improve the explanatory capabilities of debugging tools. They found
that expert programmers are faster with tool support, and that such debugging tools do not
provide enough explanations when performing harder tasks. Many, if not most, of the fault
localization and software fault prediction tools described in research articles rank the faulty
components of a program in a list based on the suspiciousness score. These faulty com-
ponents can be explained depending on the underlying methodology, however, in machine
learning approaches the explanations are often generated through heuristic methods.

In a shallow way, we may also consider a given ranked list as an explanation for a bug or
faulty proneness of statements. Such a list provides information on which part of a program
is more likely to lead to misbehavior or a potential threat. Of course, it does not explain
the ranking itself. We can extract such an explanation from the underlying ranking method.
We only need to state how to compute all the ranking scores. However, a good explanation
for any element in the ranked list would indicate why it is considered faulty and how we
can distinguish it from the others. Parnin and Orso mentioned that the ranked list is not
leading to a sufficient bug understanding and require improved explanatory capabilities. In
this paper, we contribute to this challenge comparing different kinds of explanations given
to users for bug candidates.

It is worth mentioning that Parnin and Orso [4] also provided a survey on user studies
to evaluate automated debugging tools. In this study, the authors discuss the work [30, 31]
by Ko and Myers on introducing the Whyline tool that allows to answer why and why not
questions. This kind of explanation seems to improve the understanding of programs, and
to increase debugging efficiency substantially. The Whyline tool goes beyond ranked lists as
explanations.

2.3. Beyond Ranked Lists

Besides the mentioned Whyline tool, there is other related work that deals with expla-
nations beyond ranked lists. This include early work on tutoring systems [40] for novice
programmers. Recent works include [41] and [42]. Fey and colleagues [41] combine fault
localization with explanations that are based on counterexamples and their traces. Coun-
terexamples help programmers to understand how and why a program breaks. Fey and
colleagues also presented the results of an experimental study showing that the combina-
tion of localization and explanation improves debugging. However, the authors provide no
user study. Groce et al. [42] present a debugging approach that utilizes counterfactuals and
causality for explanations. The approach is also based on counterexamples and distance
metrics between passing and failing runs. In our work, we contribute to improving explana-
tions beyond providing ranked lists. In particular, our aim is to find out which information
is helpful for users to improve their understanding of the origin of faults.

3. Methodology – Experiment Design

In this section, we summarize our research methodology and provide details of our ex-
perimental design. Let us recall our research goals here, which are to investigate (i) to what
extent different types of explanations help users to understand faults in a given spreadsheet
program (RQ-1 ), and (ii) how different types of explanations affect the quality perception
of the debugging tool (RQ-2 ).

3.1. Experiment Overview

To address the research questions, we designed a user study in which participants in-
teracted with an online version of Microsoft’s Excel spreadsheet tool, which we extended
with a plug-in component for debugging called SmellChecker [7]. The main function-
ality of the debugging plug-in is to automatically highlight formula cells in a spreadsheet
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that are considered “suspicious” based on a machine learning approach. For the purpose
of the study, we enriched the SmellChecker tool with the capability to provide different
forms of explanations to users. These explanations indicate, in different ways, why the tool
considered a given formula to be potentially faulty.

All participants of our study were directed to an online spreadsheet containing three
faults, and these faults were correctly highlighted5 by the SmellChecker tool. The par-
ticipants in each treatment group in our between-subjects user study were additionally pro-
vided with one form of explanation. The control group was only shown the “suspiciousness
score” computed by the tool without further explanation. The task of the participants was
then to inspect the cells that were highlighted (and explained) by the tool and to describe
in their own words why the formula may be faulty. An analysis of these responses through
human judges will help us answer RQ-1 on the fault understanding of participants when
given different types of explanations.

After the participants had completed this main task, they were forwarded to a compre-
hensive questionnaire. In this questionnaire, the participants informed about various facets
of their subjective perceptions regarding the tool, e.g., in terms of usefulness and usability,
and the debugging process. This questionnaire allows us address RQ-2 on subjective user
perceptions when provided different forms of explanations.

3.2. Detailed Experiment Flow

The more detailed flow of the experiment is illustrated in Figure 1. In a preparatory step,
participants read the instructions that were provided online to them and which explained
their tasks and how to install the plug-in in the online version of Microsoft Excel. The
descriptions of the task and the user manual for the tool were tailored for the different
treatment groups, as they saw different types of explanations. We provide all materials used
in the study online for reproducibility.6

Read
Handouts

Install 

SmellChecker


Fill out 

Post Task

QuestionnaireProvide
feedback on
faulty cells


Read the
Explanations


Click on
"Locate &
Explain

Suspicious
Cells"
button


Finish

Task


For all faulty cells.

SmellChecker Environment

Figure 1: Overall flow of the experiment

After having provided informed consent and after the participants had installed the
SmellChecker tool, they were performing the main task in the spreadsheet environment.
A screen capture of how the environment looked like in the control condition—the one in
which only the suspiciousness score is displayed without further explanations—is shown
in Figure 2. Here, we can see that cell I34 was highlighted by the tool, and a (high)
suspiciousness score of 80.92% is reported for this cell. Note that the annotations for the
faulty cells shown in Figure 2 were not part of the user interface, but introduced here to
better illustrate the problems in the spreadsheet.

The main task for the participants, as mentioned, was to study the information provided
by the tool for each cell and then fill a free-text input box for each highlighted cell, describing

5In our experiment, the fault prediction tool therefore did not return “false positives”, i.e., it did not
mark cells as suspicious, which did not actually contain a fault. We note that dealing with false positives is
a challenge that concerns the fault prediction task that precedes the explanation phase. Improving the fault
prediction accuracy in our case could for example be achieved by incorporating additional types of smells in
the prediction model, including those discussed in [43, 44, 45].

6https://bit.ly/3QbVA6O.
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Figure 2: SmellChecker marks cells as faulty based on the suspiciousness score [38]

what they think might be the issue with the formula in the cell. Once this task was done
for all highlighted cells the participants were forwarded to the post-task questionnaire. Note
that all participants saw the same spreadsheet with the same highlighted cells.

3.3. Studied Explanation Types

The design space for providing explanations for the outputs of a machine learning based
system is generally rich. Typically, there is a multitude of possible ways to explain things
to users not only in terms of what kind of content is shown, but also in terms of how it is
presented, e.g., in the form of text or as a visualization.7

Overview of Explanation Types. In our study, we investigated the effects of three different
ways of explaining to the study participants why a cell is highlighted, plus a blackbox
approach. Since we adopt a between-subjects design, these forms of explanations correspond
to the treatment and the control group.

1. Blackbox: In this condition, the debugging tool acts as a black box and only displays
a suspiciousness score. This is the implementation of SmellChecker as reported in
[7], and no information is provided by the tool in terms of how this score is computed
or how it should be interpreted, cf. Figure 2 and Figure 3a.

2. Visualization: This form of explanation is based on the visualization of feature im-
portance values. The machine learning approach underlying SmellChecker is based
on a set of 64 metrics that are derived from the structure of a given spreadsheet and
which serve as predictor variables for the fault probability of a given target cell, see [7].
To determine the feature importance values, we rely on the widely used LIME (Local
Interpretable Model-agnostic Explanations) [47] approach; see below for additional de-
tails. Figure 3b shows how the feature importance values of the most relevant features
(as per LIME) are visualized in a diagram.

7See for example [46] for a taxonomy of possible ways of explaining the outputs of a machine learning
system in the context of decision support systems and recommender systems.
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(a) Black Box (b) Visualization

(c) Natural Language Text (d) Human Explanation

Figure 3: Provided explanations

3. NaturalLanguage: These explanations are also based on feature importance values
determined with LIME. This time, however, we do not display them visually, but show
natural language explanations of each feature (predictor variable). To that purpose,
we developed corresponding spreadsheet-independent natural language explanations
for each predictor variable. An example of such an explanation is shown in Figure 3c.

4. HumanExplanation: Finally, we included an explanation that corresponds to how
a knowledgeable human might describe the problem(s) for a given formula. The ex-
planations shown in this condition thus serve as a form of upper limit of the quality of
the explanations that could be provided by a tool. We iterate that these explanations
were manually developed by us for the particular spreadsheet used in the experiment
and that these explanations are not based on or restricted to the top features identified
through LIME. An example of such an explanation is provided in Figure 3d.

Design Rationale and Background. Overall, our goal was to cover a diverse set of approaches
to explanation, including both textual and visual ones. We consider the Blackbox method
as a lower bound (“no explanations”), and the HumanExplanation version represents a
knowledgable and precise explanation as provided by a human expert. The lower and upper
bounds, therefore, let us assess where the automated explanations are located on this range.
Note that the provision of “suspiciousness score”, even when this score is not explained to
users in detail, might be considered as a form of explanation as well. However, in the context
of our research goals, the score does not carry any information that would help participants
understand why a certain formula might be faulty.

LIME is a recent and very popular technique to explain the prediction of any classifier
in terms of its features. The outcome of LIME is a linear model with coefficient weights
assigned to each feature, i.e., product metric in our case. Technically, these weights are
obtained by slightly tweaking the feature values for a given learning instance in a way that
they are still close to the original values, but the prediction of the base model changes.
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Ultimately, those features that have little impact on the outcome of the base model after
tweaking their values are considered less important. An alternative to LIME would be to use
SHAP [48] values. For our work, we, however, found that LIME explanations can be more
efficiently computed. Moreover, LIME explanations are particularly helpful to explain one
single prediction of a model. Finally, both for the Visualization and NaturalLanguage
explanations, we relied on this approach for explaining the predictions of SmellChecker.

To keep the complexity of the Visualization and NaturalLanguage explanations
simple, we only considered the three most important features for a given formula according
to the LIME model. In the Visualization approach, we presented users with a descriptive
name of the feature and a bar chart that illustrated the value of the corresponding coefficient
weight. For the NaturalLanguage explanation, we displayed natural language descrip-
tions of the top three features to the users. These descriptions were manually curated by us
for the purpose of the study. Note that these descriptions characterize the respective product
metric in general, and do not rely on specifics of the given spreadsheet, i.e., they can be used
for any spreadsheet. The final descriptions used in our study are based on the descriptions
of the 64 product metrics proposed earlier in [7]. The HumanExplanation descriptions,
in contrast, are specific to the given spreadsheet and exactly explain the fault in a given
formula, e.g., “The reference to cell G31 is missing in this formula.”. The exact wording
of all relevant explanations can be found in Section 3.5, where we provide all relevant study
material.

An important aspect to note here is that while the HumanExplanation explanations
were exact and accurate (by design), this is not necessarily the case for the automated expla-
nations based on LIME. In particular, none of our study’s top three features always point to
the actual problem. In other words, the study participants were sometimes confronted with
explanations, which could also contain elements that were actually not required or pointing
in the right direction. This is important to mention because, in real-world applications,
there is no guarantee that LIME explanations are always exact.

3.4. Measurement Method

In this subsection, we discuss the measurement method used in our study in detail.

3.4.1. Measuring Fault Comprehension

To answer RQ-1 on the effects of explanations on the participants’ comprehension of
the faults, we derived an average comprehension score based on a qualitative analysis of the
plain text explanations provided by the participants for each of the three faults that were
indicated by the tool. To avoid any bias, a scoring scheme was defined in advance, where
individual participant responses could receive scores between 0 and 2. The scoring scheme
is shown in Table 1.

Two of the authors scored all responses of the participants independently, and they
did not know to which treatment or control group a particular response belonged to. On
average, the two scorers largely agreed in terms of their assessments, leading to a high
intraclass correlation coefficient. The researchers then inspected the explanations where
they initially disagreed and then decided together on the final score.

We note that some participants in the HumanExplanation condition may have been
tempted to copy and paste the provided (correct) explanation into their response, which
would make it unclear if they truly understood the underlying problem. A manual inspection
of the provided responses, however, revealed no case where the system’s response was simply
copied. Instead, participants circumscribed the problem in their own words. We observed
the same for the participants in the NaturalLanguage group.

3.4.2. Measuring Subjective Perceptions

To assess the subjective quality perceptions of the different explanations (RQ-2), we
designed a questionnaire that relied on instruments that were used earlier in the litera-
ture. First, we used the System Usability Scale (SUS) to assess the usability of the overall
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Faulty
Cell

Score Rule

G33
0 Participant states that there is no fault or provides factually

wrong explanation
1 Participant states that a reference is missing
2 Participant states that cell G31 is missing in the

sum OR Participant states that the formula should be
=SUM(G8:G31)

I25
0 Participant states that there is no fault or provides factually

wrong explanation
1 Participant states that the IF is not necessary OR Partic-

ipant states that cell G25 should be referenced instead of
cell G24

2 Participants states that the formula should be consistent
with the formulas in the same column OR Participants
states that the formula should be =G25*H25

I34
0 Participant states that there is no fault or provides factually

wrong explanation
1 Participant states that a reference is missing
2 Participant states that cell I8 is missing in the sum OR Par-

ticipant states that the formula should be =SUM(I8:G31)

Table 1: Scoring method for the explanations provided by the participants

SmellChecker tool. In addition, we took inspiration from the Technology Acceptance
Model (TAM) [49] to assess the participants’ beliefs, attitudes, and behavioral intentions,
both with respect to the explanations and to the tool as a whole. Specifically, we were
interested in the system’s perceived usefulness, ease-of-use, transparency and control, trust,
satisfaction and their intentions to reuse or recommend the system in the future. The
detailed questionnaire items are shown in Table 3 below. In addition to these questions,
we asked participants about demographics and their expertise with spreadsheets. Finally,
participants could leave free-text comments before finalizing the questionnaire.

3.5. Study Materials

In this section, we provide additional information with respect to materials used in our
experiment.

Faulty Spreadsheet. Selecting a suitable spreadsheet for the purpose of the study is a chal-
lenging task. On the one hand, the spreadsheet must not be too complex, because partici-
pants must be able to understand or at least properly guess the intended semantics of the
calculations within a short period of time. On the other hand, a too simple spreadsheet
might not be representative for real-world situations, see also for related discussions in [38].
After a thorough analysis of existing spreadsheet corpora, we selected a real-world spread-
sheet from the Enron Error corpus [50] (see Figure 2) because of its size, formula complexity,
and the faults it contains.

The spreadsheet originally contained nine faulty formula cells. The cells in the range
I25:I31 contained seven identical faults. The other cells with faulty formulas were G33 and
I34. The SmellChecker tool successfully located all faults of the spreadsheet. However,
to keep the user study manageable, we corrected all but one of the identical faults, which
left us with three faulty cells:

• A range error in the formula in cell G33, where we have =SUM(G8:G30) instead of
=SUM(G8:G31),

• a double (range/logic) fault in cell I25, where we have =IF(H25;G24*H25;0) instead
of =G25*H25, and
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• another range error in the formula of cell I34, with =SUM(I9:I31) instead of =SUM(I8:I31).

Natural Language Explanations and Post-Task Questionnaire. The exact phrasing of the
natural language explanations (NaturalLanguage) and the human explanations ( Hu-
manExplanation) for the three faulty cells of the spreadsheet used in the study are given
in Table 2. Table 3 lists the exact questions that were asked to participants in the post-task
questionnaire.

Faulty
Cell

Predictive Prod-
uct Metric

Natural Language Explanation Human Expla-
nation

G33
Missing neighbor
cells (top/left)

References to cells that are to the left or
above this cell may be missing.

The reference to cell
G31 is missing in
this formula.References to cells There is an unusual number of refer-

ences to other cells.
Number of cells in
calculation

There is an unusual number of refer-
ences in this formula.

I25
IF formula com-
plexity

The IF statement is either not required
or it is too complex.

The IF statement is
not required in this
formula and the
reference to cell G24
is incorrect.

Same type cell dis-
tance (row)

This row contains both formula cells
and data cells.

References from
other cells

There is an unusual number of refer-
ences to this cell.

I34
References to cells There is an unusual number of refer-

ences to other cells.
The reference to cell
I8 is missing in this
formula.Missing neighbor

cells (top/left)
References to cells that are to the left or
above this cell may be missing.

Number of cells in
calculation

There is an unusual number of refer-
ences in this formula.

Table 2: Top three product metrics for faulty cells.

3.6. Participants

We recruited the participants for our study through the crowdsourcing platform Prolific8.
Through an initial screening process, we only considered participants with a certain level of
experience with spreadsheets, e.g., who could write formulas and manage data with spread-
sheets. Furthermore, during the study, we asked the participants about their experience
with spreadsheets. The statistics showed that more than half of the participants declared to
have more than 7 years of experience with spreadsheets, more than half of the participants
use spreadsheets daily, and less than 7% considered them as “beginners” concerning their
experience. The detailed distribution of the participants’ responses in terms of “years of
experience” are shown in Figure 4. We believe the participants have sufficient expertise in
using spreadsheets and represent at least some common class of spreadsheet users in practice.

4. Results

In this section, we first analyze to what extent explanations can assist developers in un-
derstanding the faults of a spreadsheet (Section 4.1 on RQ-1 ) and then study the subjective
quality perceptions of the participants in more depth (Section 4.2 on RQ-2 ).

4.1. Fault Comprehension (RQ-1)

Fault Comprehension Scores. We recall that we assess the fault comprehension level of par-
ticipants through a manual inspection and scoring procedure by two independent assessors.
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ID Question and answer options
Demographics
D1 How often do you use spreadsheets with formulas in your daily work?

Daily / Once in a week / Once in a month / Rarely / Don’t use at all
D2 How many years have you been using spreadsheets in your daily work?

Less than a year / 1-3 years / 4-7 years / More than 7 years
D3 I rate my expertise with spreadsheets as follows:

Beginner / Intermediate / Advanced / Expert
D4 How old are you?

18-24 years / 25-29 years / 30-34 years / 35-39 years / 40 and over
D5 What is your gender?

Male / Female / Prefer not to say
All answers are on a 1-5 Likert scale (1=strongly disagree; 5=strongly agree)
User Beliefs: Perceived Usefulness
U1 The explanations provided by SmellChecker helped me understand why the marked

cells were suspicious.
U2 I could not understand the explanations provided by SmellChecker.
U3 The explanations provided by SmellChecker were distracting.
U4 The explanations provided by SmellChecker allowed me to accomplish the task more

quickly.
User Beliefs: Perceived Ease of Use
E1 I would need an expert opinion to understand the explanations provided by

SmellChecker.
E2 The interaction with SmellChecker was clear and understandable.
E3 The explanations provided by SmellChecker were easy to understand.
E4 It took too much effort to understand the explanations provided by SmellChecker.
User Beliefs: Control
C1 I felt in control of the various functionalities of SmellChecker.
User Beliefs: Transparency
T1 I understand why the cells were marked suspicious through the explanations.
All answers are on a 1-5 Likert scale (1=strongly disagree; 5=strongly agree)
User Attitudes: Trust and Confidence
TC1 The explanations provided by SmellChecker are trustworthy.
TC2 Overall, I trust SmellChecker.
User Attitudes: Satisfaction
S1 I needed to learn a lot of things before I could get going with SmellChecker.
S2 My overall satisfaction with SmellChecker is high.
All answers are on a 1-5 Likert scale (1=strongly disagree; 5=strongly agree)
Behavioral Intentions: Recommendation Intentions
R1 I would recommend SmellChecker to my friends or colleagues who use spreadsheet tools.
Behavioral Intentions: Intention to use
I1 I would like to use SmellChecker again because I found the explanations helpful.
I2 I could not understand the explanations, so I would not use SmellChecker again.
All answers are on a 1-5 Likert scale (1=strongly disagree; 5=strongly agree)
System Usability
SU1 I would like to use SmellChecker frequently.
SU2 I found SmellChecker unnecessarily complex.
SU3 I thought SmellChecker was easy to use.
SU4 I would need the support of a technical person to be able to use SmellChecker.
SU5 I found the various functions in SmellChecker were well integrated.
SU6 There was too much inconsistency in SmellChecker.
SU7 I would imagine that most people would learn to use SmellChecker very quickly.
SU8 I found SmellChecker very cumbersome to use.
SU9 I felt very confident using SmellChecker.
SU10 I needed to learn a lot of things before I could get going with SmellChecker.
All answers are free text
Comments and Suggestions
CS1 What do you think about the explanation(s) given for the suspicious cells?
CS2 Write your comments and suggestions about SmellChecker in general here.

Table 3: Post-Task Questionnaire Items

12



8

25

20

67

0

10

20

30

40

50

60

70

Less than a year 1-3 years 4-7 years More than 7 years

Participants’ Experience Distribution

Figure 4: Distribution of Years of Experience of the Participants

1,40 1,42 1,39

1,10

0,95

1,33

1,60

1,44

1,70

1,90

1,78
1,83

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

G33 I25 I34

BLACKBOX VISUALIZATION NATURALLANGUAGE HUMANEXPLANATION

Average Fault Comprehension Scores
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The outcomes of this scoring process for each faulty cell and participant group are shown in
Figure 5.

We observe that the general pattern is consistent across the three faulty cells. The highest
level of fault comprehension was achieved by the participants of the HumanExplanation
group. This is expected, as the explanations for this group were created manually and should
serve as an upper bound in terms of fault comprehension. The average comprehension scores
on our 0-2 scale for the three cells ranged from 1.78 to 1.90, with an average of 1.83. The
lowest score of 1.78 was achieved for cell I25, which contained the most complex fault.

The second highest comprehension level was achieved by participants in the Natural-
Language group, with an average of 1.58 across all faults. Looking at the detailed scoring
results, we found that participants in this group fully comprehended (and properly de-
scribed) more than half of the faulty cells, and they showed a reasonable understanding of
the problems in the other cells.

Interestingly, the visualization-based explanations, which are based on LIME outputs
like NaturalLanguage, did not work too well in our study. In fact, on average the
fault comprehension level for this treatment group was even slightly lower than for the

8https://www.prolific.co/, participants were paid 7£ for participating in the study.

13

https://www.prolific.co/


Blackbox group, where participants were only shown the overall suspiciousness score. This
may indicate that the chosen visualization was too difficult to interpret for the participants,
or they did not contain sufficient information for the participants. On an absolute scale,
the average comprehension level was at 1.4 for the Blackbox explanations, and 1.12 for
the Visualization approach. Again, the lowest scores were obtained for the most complex
fault in each group. Overall, the higher average score for the Blackbox explanations might
indicate that the visualization may have in fact distracted the participants, and that the
participants in theBlackbox group could better focus on understanding the problems in the
faulty cells. Looking at individual responses by participants in the Visualization group,
we could observe that they in a number of cases interpreted the feature importance values as
shown in the visualizations in a wrong way. TheNaturalLanguage explanation approach,
in contrast, seems to be indeed helpful to participants in terms of fault comprehension.

The distribution of the comprehension scores for the individual cells and participant
groups are shown in Figure 6 in the form of box plots. An ANOVA analysis revealed
significance differences between the participant groups for each cell.9 We, therefore, applied
Tukey’s HSD post-hoc tests with Bonferroni correction.10 The tests revealed a number of
significant differences between the participant groups, which we summarize in Table 4.

Figure 6: Box plot (Fault Comprehension Score)

The extent of the differences in the mean comprehension scores vary across the faulty
formulas. The difference between the “optimal” human explanations and the visualization-
based approach are at least moderately significant in all cases. In the case of the most
complex fault in cell I25, it turned out that also the automatically generated NaturalLan-
guage approach was significantly better than the Visualization technique.

Overall, answering RQ-1, we see our results as clear indications that well-designed expla-
nations can be a suitable tool for improved fault comprehension in the spreadsheet debugging
process. It also turns out that the usefulness of explanations depends on their particular im-
plementation and there are indications that it may also depend on the complexity and nature
of the faults. In our specific comparison, we found that showing natural language descrip-
tions for important predictor variables in the NaturalLanguage approach is promising.

9The p-values were below 0.001 for cell G33 and cell I25, and at 0.03 for cell I34.
10Bonferroni correction is done to account for the multiple comparisons. After applying the correction,

the α level to reject the null hypothesis is lowered from 0.05 to 0.0083. An α level of 0.1 is lowered to 0.016.
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A widely used visualization approach (Visualization), on the other hand, actually can
even have slightly detrimental effects compared to a situation where the system does not
provide specific explanations at all.

G33 I25 I34

HumanExplanation > Blackbox ∗∗ – –
HumanExplanation > Visualization ∗∗ HumanExplanation > Visualization ∗∗ HumanExplanation > Visualization ∗

– NaturalLanguage > Visualization ∗∗ –

Table 4: Overview of significant differences in terms of fault comprehension. ∗∗ indicates significance at
α=0.05, ∗ significance at α=0.1.

Feedback Analysis. Given the observations regarding the participants’ level of fault compre-
hension as just discussed, we examined if the free-form feedback on the explanations—from
questionnaire item CS111 in Table 3—aligns with these general tendencies. To analyze this
aspect, we used Inductive Coding [51] as a technique to extract concepts or themes from
a body of text in a structured way. During this process, the coders were not aware to
which participant group a given free text belonged to. The identified concepts are shown
in Table 5. To obtain a broader picture of the general assessment of the participants of the
explanations we then further categorized the concept as having either a positive, negative,
or neutral sentiment.

Sentiment Concepts

Positive

Useful
Helpful
Understandable
Good/Great
Recommend

Negative

Complicated/Cumbersome
Dislike
Confusing
Unhelpful
Needs improvement

Neutral General remarks

Table 5: Concepts Categorization

We then counted the occurrence of each concept in the free-form feedback text. The
frequency distribution of the concept sentiments for the groups is presented in Figure 7.

We clearly observe that the HumanExplanation and NaturalLanguage groups
provided largely positive feedback on the explanations. The participants who saw the
visualization-based explanations where less positive, but still provided positive feedback
more often than the participants who only saw the suspiciousness scores in the Blackbox
group. However, participants in the Visualization group also frequently reported nega-
tive feedback. This supports our observations from the fault comprehension analysis that
participants often may have had difficulties in interpreting the visualization.12 Overall, this
qualitative analysis of the free-form feedback seems largely consistent with the fault com-
prehension analyses reported above, where natural language explanations generally had a
positive effect.

11The exact question read: “What do you think about the explanation(s) given for the suspicious cells?”
12Figure 7 shows a small set of negative feedback also for theHumanExplanation condition. An inspection

of these cases revealed that all but one of the few negative comments did not refer to the explanations, but
to other aspects like the complexity of the installation of the plug-in. The one remaining comment with a
negative sentiment mentioned that “a step-by-step guide, particularly on I25, would have been useful.”
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4.2. Subjective Perceptions (RQ-2)

We recall that the study participants were asked to answer in-depth questionnaires after
completing the main task of analyzing potential faults. We evaluated four dimensions of
perceptions, namely Tool Usability, User Attitudes, User Beliefs, and Behavioral Intentions.
Our analyses involve a larger number of comparisons and significance tests, and we share all
detailed outcomes in an online repository13. For the sake of brevity, we limit our discussions
here to the general trends and insights gathered through our user study.

Tool Usability. Participants answered a 10-item questionnaire from the System Usability
Scale (SUS), using a 1-to-5 scale. The range of the overall SUS score for a system lies
between 0 and 100, which is obtained by normalizing the response values of the questionnaire
items. For this purpose, value 1 is subtracted from each positively framed question’s score,
and each negatively framed question’s score is subtracted from value 5. Finally, the sum of
these scores is multiplied by 2.5 to normalize the scores between 0 and 100. The overall SUS
scores for the different participant groups are shown in Table 6.

Treatment Group SUS score
HumanExplanation 82.25
NaturalLanguage 79.50

Visualization 68.03
Blackbox 67.26

Table 6: Overall System Usability Scale (SUS) scores. Values larger than 68 are considered above average
(“good”).

Overall, we observe that all versions of the tool obtained overall scores that are close
or markedly higher than the general threshold of 68. Systems that score higher than this
value are usually considered above average or “good”. The scores that were obtained for the
tool versions that provided HumanExplanation and NaturalLanguage explanations
are much higher than for the other types of explanations. This is in line with our findings
reported above with respect to fault comprehension, and these results provide strong indi-
cations that these two types of explanations can strongly contribute to the usability of the

13https://bit.ly/3QbVA6O
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1 1,5 2 2,5 3 3,5 4 4,5 5

SU1: I would like to use SmellChecker frequently

SU2: I found SmellChecker unnecessarily complex

SU3: I thought SmellChecker was easy to use

SU4: I would need the support of a technical person to be able to use

SmellChecker

SU5: I found the various functions in SmellChecker were well

integrated

SU6: There was too much inconsistency in SmellChecker

SU7: I would imagine that most people would learn to use

SmellChecker very quickly

SU8: I found SmellChecker very cumbersome to use

SU9: I felt very confident using SmellChecker

SU10: I needed to learn a lot of things before I could get going with

SmellChecker

SUS Questionnaire Items Mean Scores (1: Strongly Disagree, 5: Strongly Agree)

BLACKBOX VISUALIZATION NATURALLANGUAGE HUMANEXPLANATION

Figure 8: Mean scores of the SUS questionnaire items

SmellChecker tool as a whole. We acknowledge that the observed differences may be
particularly pronounced in our study, where the participants had to verbalize the potential
reasons for a suspected fault as a main task when interacting with the tool.

The mean responses for each of the items of the SUS scale are shown in Figure 8. Aligned
with the overall scores, we find that the assessments by participants in theHumanExplana-
tion and NaturalLanguage groups were consistently better than those for the other two
participant groups. While in some cases the differences are not too large, there are stronger
differences for some of the questions. Looking at item SU2, for example, we observe that
the Visualization group found the SmellChecker tool markedly more complex than the
other groups. This effect can apparently be attributed to the design of the explanations,
because nothing else was changed across the groups.

User Beliefs. The average responses to the questionnaire items relating to user beliefs are
presented in Figure 9.14 In general, the participants in the HumanExplanation group
reported the best values for various aspects covered in this questionnaire, followed by the
participants in the NaturalLanguage group. Looking at some of the details, we for ex-
ample find that participants in the HumanExplanation and NaturalLanguage groups
found the explanations to be more useful, more understandable and less distracting than
participants in the other groups. Conversely, participants in the Visualization group of-
ten seemed to have difficulties understanding the explanations. Again, this is aligned with
the other observations that we reported so far.

An interesting observation can be made of item T1, where participants had to inform
to what extent they understood why the tool marked a cell as being potentially faulty.
While the participants in the Blackbox group gave lower scores than participants in other
groups, their average response was not at the very low end. This is to some extent unexpected
because the tool in that condition did not provide any information about the possible reasons
for a cell being suspiciousness other than an overall suspiciousness score. Thus, we suspect
that participants in the Blackbox group may have interpreted the question at a different
level. Their reasoning might have been that they understood that the cell was marked

14The mean participant responses and standard deviations for user beliefs, attitudes, and behavioral
intentions can also be found in Table 7 in the Appendix.
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U1: The explanations provided by SmellChecker helped me understand

why the marked cells were suspicious

U2: I could not understand the explanations provided by SmellChecker

U3: The explanations provided by SmellChecker were distracting

U4: The explanations provided by SmellChecker allowed me to

accomplish the task more quickly

E1: I would need an expert opinion to understand the explanations

provided by SmellChecker

E2: The interaction with SmellChecker was clear and understandable

E3: The explanations provided by SmellChecker were easy to

understand

E4: It took too much effort to understand the explanations provided by

SmellChecker

C1: I felt in control of the various functionalities of SmellChecker

T1: I understand why the cells were marked suspicious through the

explanations

User Beliefs Mean Scores (1: Strongly Disagree, 5: Strongly Agree)
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Figure 9: User Beliefs: Perceived Usefulness (U1-U4), Perceived Ease of Use (E1-E4), Control (C1), Trans-
parency (T1)

because it had a high suspiciousness score, i.e., they might not have considered reasons that
relate to the formula in the cell itself.

User Attitudes. In terms of user attitudes, we asked participants about their trust and
confidence15 with respect to the explanations and about their overall satisfaction. The
results for this part of the questionnaire are shown in Figure 10.

We find that participants in the HumanExplanation group consistently reported the
best values in terms of these factors, i.e., the participants in the HumanExplanation group
found SmellChecker and the explanations more trustworthy and their overall satisfaction
is slightly higher compared to the other groups. The average responses of the Natural-
Language group for trustworthiness and satisfaction were also encouraging, e.g., they are
around 4 for the positively framed question items (TC1, TC2 and S2). The lowest values
were consistently observed for the Blackbox group. On an absolute scale, these values
were also not too bad, and participants in this group were still satisfied to a certain extent
with the overall tool.

An interesting observation can be made with respect to the Visualization group. Even
though the level of fault comprehension was rather low for this group, and even though
participants found these explanations to be rather complex and more difficult to understand
(see User Beliefs), they reported the same level of trust as the participants in the Natural-
Language group. This may have been caused by the fact that participants in these groups
were provided information about the same set of features, albeit in a different form. We
may also speculate that the more formal, numeric explanation in the Visualization group
may have led participants to attribute similar levels of trust, even though the visualization
was more complex and less understandable than the NaturalLanguage explanations.

15We acknowledge that in general trust towards a software application is a complex and multi-faceted
concept, and may be based on various factors such as multiple positive past experiences with a given tool
or similar tools over time, or from the credibility of the provider of the application. In our study, we assess
the participants’ trust (or: perceived trustworthiness of the system) after one single experience. This may
represent a certain limitation of our present study and earlier works in this area; see [52] for a meta-analysis
of the impact of trust in the Technology Acceptance Model.
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TC1: The explanations provided by SmellChecker are trustworthy

TC2: Overall, I trust SmellChecker

S1: I needed to learn a lot of things before I could get going with

SmellChecker

S2: My overall satisfaction with SmellChecker is high

User Attitudes Mean Scores (1: Strongly Disagree, 5: Strongly Agree)
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Figure 10: User Attitudes: Trust and Confidence (TC1-TC2), Satisfaction (S1-S2)

Behavioral Intentions. We report the responses of the questionnaire items relating to be-
havioral intentions (to reuse the tool and to recommend it to others) in Figure 11.

The observations so far made in terms of user beliefs and user attitudes are clearly re-
flected in the responses to these final questions. Participants in the HumanExplanation
condition expressed the highest level of intentions to use the tool in the future and to rec-
ommend it. The NaturalLanguage explanations led to slightly lower positive intentions,
followed by the Visualization and the Blackbox explanations. Overall, we observe a
positive effect of adding understandable explanations both in terms to the tool as a whole
(R1) and in terms of the contribution of the explanations to the future intentions (I1, I2).

1 1,5 2 2,5 3 3,5 4 4,5 5

R1: I would recommend SmellChecker to my friends or colleagues who

use spreadsheet tools

I1: I would like to use SmellChecker again because I found the

explanations helpful

I2: I could not understand the explanations, so I would not use

SmellChecker again

Behavioral Intentions Mean Scores (1: Strongly Disagree, 5: Strongly Agree)
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Figure 11: Behavioral Intentions: Recommendation Intentions (R1), Intentions to Use (I1, I2)

Overall, answering RQ-2, our results indicate that well-designed explanations can help
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to improve various quality perceptions and the trust towards a spreadsheet debugging tool.

5. Implications & Threats to Validity

5.1. Implications

Our research has a number of important practical implications. With respect to RQ-1,
the main insight of our study is that providing explanations in the context of automated
fault prediction support can indeed help spreadsheet users improve their understanding of the
potential faults that are highlighted by such a tool. Thus, designers of fault prediction tools
should consider enhancing their tools by a corresponding functionality, since an increased
level of fault comprehension will naturally be beneficial for the subsequent fault removal
step.

Second, and also importantly, we found that the design of the explanation matters a
lot. The most effective explanations in our study were manually engineered ones written
in natural language, which we considered as an upper bound in our experiments. The
natural language explanations, which were automatically selected based on the widely-used
LIME approach, however, turned out to be promising as well. The approach requires some
initial manual effort, but this effort is very limited as it amounts to merely creating one
natural language sentence for each predictor variable (feature) of the underlying supervised
learning problem. We recall that these descriptions are not tied to a specific spreadsheet or
application domain. Thus, these explanations can be crafted once and then shipped with
the debugging tool. In the context of design choices, we furthermore found that some forms
of explanations might not be effective at all or even have a slightly detrimental effect on
fault comprehension. This may happen when the explanation is not easy to comprehend. In
our study, we found indications that a popular form of visualizations in the literate based
on bar charts may even misguide spreadsheet users.

Given these observations in the context of RQ-1, we conclude that any form of explana-
tions that are presented to users must be carefully evaluated in terms of their true usefulness
with studies involving humans. In our case, this evaluation was done in two ways: (a) by
manually scoring the participants’ level of fault comprehension in a quantitative way and (b)
by qualitatively analyzing the participants’ sentiment towards the provided explanations as
expressed in the free-form feedback statements. The observations for both types of analysis
were well aligned in our study. Generally, relying on more than one form of evaluation
procedure is advisable in such forms of human-centered research to obtain robust results.

Our analyses in the context of RQ-2 highlight that explanations in the spreadsheet do-
main may not only serve the primary target of improving the participants’ understanding
of potential faults. We found that well-designed explanations lead to better quality percep-
tions in terms of usability and usefulness, and that such explanations may help to increase
the users’ trust in the debugging system as a whole and, consequently, their intentions to
use the tool or to recommend it to others. These findings underline that there are several
potential advantages of providing explanations when highlighting parts of a program to be
as potentially faulty.

5.2. Threats to Validity

Our work comes not without limitations. First, our study was based on one particular
spreadsheet and on one given set of faults.16 Thus, it remains to study if we would observe
similar effects for spreadsheets that are largely different from the one used in our experiment.
Nonetheless, we believe that the spreadsheet used in our study and the faults it contains
are representative of a larger set of spreadsheets that can be found in practice. The used
spreadsheet in fact is a real-world one and all the faults in it were also “natural”. Also, in

16Also, certain types of faults, e.g., when users entered a constant value instead of a formula in a cell, were
not investigated yet in our present study.
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terms of the number and complexity of the formulas, there are many spreadsheets in the
Enron error corpus [53] of real-world spreadsheets that are very similar to our spreadsheet.

Generally, our work shares the potential limitations of any user study in which study
participants are completing tasks in an artificial environment and setting. In terms of the
realism of the study, we are confident that our setting was perceived to be quite natural by
participants, given their feedback on the general usefulness of the tool and their intentions
to use such a tool in the future. In terms of study participants, we relied on crowdworkers.
Since most of these crowdworkers indicated that they had at least seven years of experience
with spreadsheets, we argue that the study participants are representative for at least some
part of the typical population of spreadsheet users in practice. Furthermore, to ensure that
our results are not based on the work of potentially inattentive and unmotivated crowd-
workers, we (a) only admitted crowdworkers with a positive track record to the study and
(b) implemented attention checks to only include the responses of careful crowdworkers in
our analyses.

Furthermore, our study was so far limited to four conditions, where in two of them the
explanations were automatically selected and/or visualized based on a widely-used technique
from the field of explainable AI. Other forms of explaining the fault predictions are certainly
possible and are part of our future work. However, we recall here that the goal of our
study was not to find the “best” form of explanations but to take the first step towards
an understanding of the general usefulness of providing explanations for automated fault
predictions. Moreover, in our experiment, we assumed that there were no “false positives”,
i.e., that the tool only marked formulas as suspicious, which were faulty. While avoiding
such false alarms is generally a problem of the underlying fault prediction method, it may be
interesting to study how different forms of explanations affect spreadsheet users when there
is no fault. For example, one hypothesis could be that more understandable explanations
are also helpful for users to detect that the highlighted cell is correct. But, it may also
be that users overly rely on the predictions and explanations by the tool and may even
start modifying a correct formula, see [38] for a study on tool over-reliance in the context of
spreadsheets.

6. Summary and Outlook

In a widely cited study, Parnin and Orso [4] questioned if certain automated debugging
tools from the literature are really helping developers. They concluded that this might not
always be the case and that this may be caused by certain assumptions that are made by
researchers which may not hold in practice, e.g., how developers inspect lists of potentially
faulty program elements. As a consequence, the authors call for more research that study
questions of fault comprehension and, therefore, for more research that is based on studies
with users.

In our research, we have addressed the question of the usefulness of a recent spreadsheet
fault prediction technique in this spirit for the class of spreadsheet programs. In particular,
we have investigated to what extent it may be beneficial to explain the tool’s fault prediction
to users. Overall, we find strong indications that providing explanations for the outcomes
of an underlying machine learning model can indeed improve the usefulness and quality
perception of the fault localization tool. To our knowledge, this is the first work in the area
of spreadsheet debugging, and we found also very limited works that address the role of
explanations for fault prediction techniques for general software. More research is therefore
required to understand if the insights from our experiment in the spreadsheet domain gener-
alize for other types of software programs. Nonetheless, in a broader perspective, we see our
work also a contribution to the area of explainable AI, which follows the assumption that a
wider and adoption of AI-fueled technology might often depend on a system’s capability of
explaining its decisions or recommendations.

In terms of future works, we plan to investigate alternative ways of explaining the sys-
tem’s fault predictions to users, including in particular other forms of visualizations, given
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that visualizations have proven a promising means to support spreadsheet debugging pro-
cesses in the past, see [54]. Moreover, besides validating our findings with other spreadsheets
and to analyze to what extent the effectiveness of explanations is correlated with the com-
plexity of the faults, it remains important to study the usefulness of explanations when
alternative tools and underlying techniques are used for fault prediction, e.g., based on
spectrum-based fault localization or on model-based reasoning.
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Appendix

Question ID Blackbox Visualization
Natural
Language

Human
Explanation

User
Beliefs

Perceived
Usefulness

U1 2.60 (1.33) 3.23 (1.05) 3.87 (1.02) 4.40 (0.88)
U2 2.97 (1.40) 2.50 (1.38) 2.03 (1.14) 1.67 (1.04)
U3 2.13 (1.18) 2.13 (1.18) 1.80 (0.98) 1.40 (0.92)
U4 3.10 (1.42) 3.60 (1.31) 3.73 (1.29) 4.37 (0.80)

Perceived
Ease of Use

E1 2.37 (1.30) 2.37 (1.38) 1.63 (0.95) 1.53 (0.92)
E2 3.30 (1.19) 3.67 (1.14) 3.97 (0.87) 4.23 (0.80)
E3 3.10 (1.27) 3.27 (1.15) 3.90 (0.91) 4.43 (0.72)
E4 2.40 (1.14) 2.60 (1.20) 2.03 (1.02) 1.43 (0.76)

Control C1 3.53 (1.15) 3.30 (1.10) 3.87 (1.02) 3.87 (0.85)
Transparency T1 3.03 (1.40) 3.53 (1.33) 4.20 (0.83) 4.57 (0.56)

User
Attitudes

Trust and
Confidence

TC1 3.50 (1.18) 4.07 (0.96) 4.07 (0.93) 4.47 (0.72)
TC2 3.57 (1.09) 3.87 (1.09) 4.23 (0.84) 4.27 (0.73)

Satisfaction
S1 2.43 (1.41) 2.30 (1.27) 1.77 (1.02) 1.77 (0.96)
S2 3.30 (1.22) 3.53 (0.99) 3.90 (0.83) 4.07 (0.73)

Behavioral
Intentions

Recommendation
Intentions

R1 3.20 (1.28) 3.27 (1.26) 3.90 (1.16) 4.2 (0.87)

Intention to use
I1 2.90 (1.33) 3.13 (1.36) 3.70 (1.07) 4.13 (1.02)
I2 2.27 (1.21) 2.07 (1.18) 1.63 (0.80) 1.13 (0.34)

Table 7: Mean (standard deviations) of participant responses in terms of user beliefs, user attitudes, and
behavioral intentions. The exact questions are shown in Table 3.
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