
�����������������������������	��
��
��������
�����
�����	�
�������	�
���	�

����
��������	
�
������

A. Felfernig*, G. Friedrich*, D. Jannach*, M. Zanker*, and R. Schäfer+

��������	
���
��	�
�	��
��������
�	��������	������		

�
���������	�����
�����	�����
�����	�������	
���� �	
���!�"�#�
�	�����
$	

1 This work takes place with the financial support of the IST Program of the
European Union under contract IST-1999-10688.

�

1RZDGD\V� FRQILJXUDWLRQ� V\VWHPV� DUH� W\SLFDOO\� VWDQGDORQH� V\VWHPV� QRW�

VXSSRUWLQJ�VXSSO\�FKDLQ�LQWHJUDWLRQ�RI�FRQILJXUDEOH�SURGXFWV�DQG�VHUYLFHV��7KH�

JRDO� RI� WKH� (8�IXQGHG� SURMHFW� &$:,&206� LV� WKH� GHYHORSPHQW� RI� DQ�

LQWHJUDWLRQ�SODWIRUP�IRU�VXFK�V\VWHPV�WKDW�VXSSRUWV�D�SHUVRQDOL]HG��GLVWULEXWHG�

FRQILJXUDWLRQ�SURFHVV��2QH�RI�WKH�NH\�WDVNV�RI�VXFK�D�SODWIRUP�LV�WKH�HIIHFWLYH�

VXSSRUW�RI� FRQILJXUDWLRQ�NQRZOHGJH�DFTXLVLWLRQ�DQG� LQWHUFKDQJH��ZKLFK� LV�D�

SUHUHTXLVLWH�IRU�HQDEOLQJ�FRPPXQLFDWLRQ�DPRQJ�FRQILJXUDWLRQ�V\VWHPV��,Q�WKLV�

SDSHU�ZH� SUHVHQW� WKH� SULQFLSOHV� RI� WKH�&$:,&206�.QRZOHGJH� $FTXLVLWLRQ�

&RPSRQHQW�ZKLFK�VXSSRUWV�WKH�GHVLJQ�RI�FRQILJXUDWLRQ�NQRZOHGJH�EDVHV�DQG�

WKH� LQWHJUDWLRQ� RI� KHWHURJHQHRXV� NQRZOHGJH� EDVHV� XVLQJ� D� FRQILJXUDWLRQ�

GRPDLQ�VSHFLILF� ODQJXDJH�EDVHG�RQ� WKH�8QLILHG�0RGHOLQJ�/DQJXDJH� �80/���

&RQILJXUDWLRQ�PRGHOV�UHSUHVHQWHG�LQ�WKLV� ODQJXDJH�FDQ�EH�LPSRUWHG�LQWR�WKH�

&$:,&206� HQYLURQPHQW� DQG� IXUWKHUPRUH� EH� LQWHJUDWHG�ZLWK� FRQILJXUDWLRQ�

PRGHOV�VWHPPLQJ�IURP�RWKHU�VXSSOLHU�FRQILJXUDWLRQ�V\VWHPV��

���������	
������
In today’s rapidly changing, globalizing markets, traditional mass production
paradigms appear anachronistic. Mass production is increasingly replaced by
��������	
��

������������
������
��
������������. Companies have to differentiate
their product spectrum for fulfilling the customers’ individual needs. The additional
costs for offering individual products must be minimized in order to be competitive.
����� ������
���
�� (PineII, Victor and Boynton, 1993) is a new paradigm
representing the trend towards the production of highly variant products under mass
production time and pricing conditions. This paradigm imposes increasing demands
on the development and maintenance of software supporting processes related to
variant products. This software must be able to handle rapidly changing, complex
constraints on products and corresponding business processes supporting quotation,
order processing, production, delivery, and maintenance. ����
�����
��� �������
(configurators) are an important prerequisite for the effective implementation of
processes supporting a mass customization business strategy. The application of
configuration systems leads to reduced response times to customer requirements by
effectively supporting quotation and order processing. Furthermore, configuration

���

��������������
�
�
���������
��
���������������
���������������
���������

2

technology avoids invalid orders which consequently decreases time between sales
and delivery/installation of the product.
Business processes are no longer restricted to single enterprises, but transcend
companies’ boundaries along the value chain of products and services. In this
context, supply chain integration of specialized solution providers is an important
issue. In the telecommunication industry, solution providers configure enterprise
networks based on switching hardware solutions. Add-on products for these
integrated enterprise configurations are ordered from sub-suppliers (e.g. add-on
applications providing
�
��	�
��	
� functionality). Products of sub-suppliers must
themselves be configured. Since there are dependencies between the parts provided
by different suppliers, a distributed configuration approach must be supported in
order to enable the calculation of a consistent distributed solution. For privacy
reasons as well as for reasons of different knowledge representation formalisms, a
centralized approach for solving configuration tasks is not feasible. However - in
order to allow the calculation of a distributed configuration solution - parts of the
configuration knowledge must be shared between the involved configuration
systems.
In the following sections, we show how knowledge acquisition and knowledge
interchange is realized in CAWICOMS2, which aims to support a distributed and
personalized configuration process for configurable products and services. Figure 1
shows the overall architecture of the CAWICOMS environment.

 ���������	
��
�
��
�

&$:,&206�&RQILJXUDWLRQ�6HUYHU
&$:,&206
)URQWHQG

&$:,&206�%DFNHQG
Interface 2

�����
����	���������
�

Interface 1

�������

����	���������
�

Interface 3

&$:,&206�.QRZOHGJH�$FTXLVLWLRQ�&RPSRQHQW

Interface 4

Interface 5

'LVWULEXWHG
3UREOHP�6ROYLQJ 0DLQ

&RQILJXUDWRU

��������	�
����

������
����������������

This architecture is based on the following scenario. The user of a B2B/ERP
platform3 navigates through a product catalog. When the user selects a configurable
product (e.g. an integrated telecommunication solution), the CAWICOMS
environment is activated and the distributed configuration process is initiated via the
Frontend (Interface 1). Parameters representing user requirements are exchanged
between Frontend and Backend via Interface 2. The distributed configuration

2 CAWICOMS is the acronym for Customer-adaptive Web Interface for the
Configuration of products and services with Multiple Suppliers.
3 B2B/ERP platform denotes a kind of online store, electronic marketplace, or ERP
system.

���������������
�
�
���������������
���������������
���������

3

process is coordinated by the CAWICOMS Backend via Interface 3, i.e. Interface 3
supports the communication between the involved configuration systems. Within
this scenario, the �������� is responsible for personalizing the presentation of a
configurable product. Personalization is done according to the user’s needs. Here, it
is also possible to take into account company specific rules which reflect the
company’s policies. For example, it could be specified which sub-suppliers should
be preferred when configuring a product. The ��� ��� is responsible for
coordinating the distributed configuration process, whereby the !
���
"��������"����
#��

�� component is responsible for coordinating the communication with remote
configurators, and the ��
������
������� component is responsible for calculating
local solutions and forwarding requirements to remote configurators4. Interface 4
enables inclusion of configuration models stemming from the Knowledge
Acquisition Component into the CAWICOMS Configuration Server. Finally,
Interface 5 represents established B2B channels between sub-suppliers and
integrated-solution providers5. The CAWICOMS ���������� ����
�
�
��
��������� is responsible for supporting an effective design process for
configuration models and for integrating partial supplier configuration models for
knowledge sharing purposes.
The paper is organized as follows. Section 2 discusses knowledge representation
concepts of the CAWICOMS Knowledge Acquisition Component, which supports
effective knowledge acquisition and knowledge sharing in heterogeneous
configuration environments. On this basis, Section 3 discusses the knowledge
acquisition process inside the CAWICOMS Knowledge Acquisition workbench.
Section 4 sketches the application of this workbench for realizing knowledge
sharing between different configuration environments. Section 5 and Section 6
contain related work and conclusions.

���
�����	������
��������������������
One goal of the CAWICOMS project is to provide a knowledge acquisition
environment which supports the design of configuration knowledge bases for
different configuration systems. Such a flexible modeling environment must be
based on an integrated extensible configuration ontology. Similar to the
standardization of object-oriented modeling languages which resulted in the
formulation of the Unified Modeling Language (UML) (Rumbaugh, Jacobson and
Booch, 1998), our approach is to trigger a standardization process resulting in a
standardized configuration language we call the $����
�� ����
�����
��� %�������
(GCL). The introduction of such a language has the following advantages.

• The integration of PDM (Product Data Management) standards with

configuration technology is still an open issue. UML 2.0 is intended to be
synchronized with the EXPRESS language, which is the standard language for
defining STEP (ISO, 1994) application protocols (STEP standards). Using
UML in this context alleviates the integration of configuration and PDM

4 The CAWICOMS Frontend as well as the Backend have further subcomponents –
in this paper only the Backend components are shown in further detail.
5 Note that the interfaces shown in Figure 1 represent a simplified subset of the
interfaces defined within the CAWICOMS environment.

��������������
�
�
���������
��
���������������
���������������
���������

4

technology since the same basic representation language is used for representing
configuration knowledge and PDM knowledge.

• UML is widely applied in industrial software development as a standard design
language supporting the whole software development process starting with the
requirements analysis phase up to the implementation phase.

• UML is extensible for domain-specific purposes, i.e. the semantics of the basic
modeling concepts of the language can be further refined in order to be able to
provide domain-specific modeling concepts, which allow a more intuitive
construction of the corresponding models.

• The Object Constraint Language (OCL) (Warmer and Kleppe, 1999) is a built-
in constraint language supporting a formal definition of constraints on the
models, which were built using the diagrammatic notations of UML.

• Finally, we have made excellent experiences in using UML designs for
validation by technical experts.

Before we start to sketch the ideas behind GCL, we give a short introduction into the
ideas behind UML 2.0. A first version of the UML 2.0 standard is announced for the
end of 2001. Within this standardization process the goal of the precise UML
(pUML) group (see Evans and Kent, 1999) is to introduce a meta-modeling
language (MML) with clear semantics, which can be used for constructing modeling
languages for specific application domains6. Consequently - compared to the
extension mechanisms available in the version 1.4 of UML – in UML 2.0, extension
mechanisms will be the building blocks of the language. (Clark, Evans, Kent, and
Sammut, 2001) point out that the current semantics definition of UML uses a semi-
formal notation (OCL – Object Constraint Language) to represent syntactic rules on
the meta-model and natural language text for the rest. (Clark, Evans, Kent, and
Sammut, 2001) present the Meta Modeling Language (MML), which should be
central part of UML 2.0 and which should be used to define the semantics of UML
2.07. Extensibility in MML is provided by the notion of class-based inheritance and
the notion of package extension which is derived from the extension mechanisms of
Catalysis (D`Souza, Wills 1998). A prototype implementation of MML is already
available and is tested within the CAWICOMS project for the definition of the first
version of GCL.
GCL consists of a set of UML 2.0 packages which represent modeling concepts of
state-of-the-art configuration systems. We identified a set of useful modeling
concepts widely used in the configuration domain. These commonly used concepts
are contained in a basic GCL configuration package. This basic package is extended
with concepts of particular configuration languages - within CAWICOMS the first
step was to integrate the ILOG JConfigurator (Junker, 2001) representation
language. Such configurator-specific concepts are integrated into specializations of
the basic GCL package.
The left hand side of Figure 2 contains an MML definition of the ������
(abbreviation for ����
�����
��� �����) modeling concept defined in the GCL ���
�
package. This modeling concept represents basic entities constituting a product
structure (e.g. component types or function types). In addition to the attributes

6 In the following we will show how this can be done for the configuration domain.
7 An executable version of OCL is a subset of this language.

���������������
�
�
���������������
���������������
���������

5

defined for ������, a set of constraints (denoted as well-formedness-rules in the
actually available UML versions) is defined which restrict the usage of the modeling
concept ������. The left hand side example in Figure 2 contains one constraint,
which states the fact that if a ������ instance is the root of a component hierarchy
&
�����'����() then this ������ instance must not have any superclasses
(#�����������	*�
��'+) and this instance must not be part of any other �������
instance�(����,��	*�
��'+).
�

3DFNDJH��%DVLF�
���

���$�&RQILJXUDWLRQ�&ODVV

�FODVV�&&ODVV

��QDPH���6WULQJ�

��VWHUHRW\SH���6WULQJ�

��LG���6WULQJ�

��LVURRW���%RROHDQ�

��6XSHU&ODVVHV���6HW�EDVLF�&&ODVV��

��6XE&ODVVHV���6HW�EDVLF�&&ODVV��

��$WWULEXWHV���6HW�EDVLF�&$WWULEXWH��

��3DUW2IV���6HW�EDVLF�&$VVRFLDWLRQ��

��+DV3DUWV���6HW�EDVLF�&$VVRFLDWLRQ��

��8VHG&ODVVHV���6HW�EDVLF�&$VVRFLDWLRQ��

��&RQVWUDLQW���6WULQJ

��LQY

����5RRW3URSHUW\�

���VHOI�LVURRW� �WUXH�LPSOLHV

����������VHOI�6XSHU&ODVVHV�!VL]H ��DQG

����������VHOI�3DUW2IV�!VL]H �

�HQG�

���

3DFNDJH��-&RQILJ�
���

FODVV�&&ODVV-&21),*�H[WHQGV�EDVLF�&&ODVV

��LOR,QVWDQFHV&RXQW���,QWHJHU�

��VFRSH���6WULQJ

��LQY

����6WHUHRW\SH3URSHUW\�

���VHOI�VWHUHRW\SH� ��&ODVV�

�HQG�

���

��������	����������������������� �

On the right hand side of Figure 2 a configurator-specific extension of the basic
������ concept named ������-�,.��$/0�1,0 is introduced. Additional
configurator-specific attributes are added and further constraints are specified which
only hold in the context of the considered configuration environment. Class-based
inheritance is used to specify the new class ������-�,.��$/0�1,0. The building
blocks of the JConfigurator configurator are classes, where the attribute ���������� is
set to “�����2 – this is assured by the well-formedness-rule #�����������������.
Note, that the MML prototype presented in (Clark, Evans, Kent, and Sammut, 2001)
allows automatic checking of instances of a GCL package against the definitions on
the meta-level. The class definitions of Figure 38 represent ������ instances
corresponding to the definition shown in Figure 29. This configuration model is
syntactically correct w.r.t. the definitions given in Figure 2.

���
�����	������
����������������
The following tasks constitute the knowledge acquisition process defined for the
CAWICOMS ��������������
�
�
������������:

8 The TeCOM class represents the central component type of an integrated
telecommunication solution.
9 The attributes
� and
����� are hidden in Figure 3.

��������������
�
�
���������
��
���������������
���������������
���������

6

• !��
����3������
�����
��������4 In order to design a configuration knowledge
base for a certain configuration environment, a subset of GCL is used, i.e. those
concepts are used, which are contained in the package of the corresponding
configuration system (e.g. package -����
�������). Figure 3 contains an
example configuration model representing the basic structure of an integrated
telecommunication switch. In the current version of the CAWICOMS
Knowledge Acquisition Component constraints on the product model are
represented as ILOG JConfigurator-specific business rules. In future versions
this language will be replaced by OCL (Warmer, Kleppe, 1999).

• ����#	 ���	 �$
������	 �����	 ��	 ���	 ����	 ������
�	 ��
����� 	 The usage of the
modeling concepts must correspond to the well-formedness-rules10 of the meta-
model. This check can be done automatically using the MML interpreter
provided by (Clark, Evans, Kent, and Sammut, 2001). In our case the complete
TeCOM model (see Figure 3) is checked against the corresponding package
definitions (e.g. package -����
�������).

• $����������
��
��5�%�
�������4 The UML model of the configurable product is
translated into an XML (W3C, 1999) instance11. The XML instance represents
the basic configuration model, which is further used by the CAWICOMS
Frontend in order to add additional personalization information. For reasons of
space limitations an example XML instance is omitted here.

• $�������� �3�� ����
�����
��� ��������� "���4 Within CAWICOMS, the XML
instance is translated into the ILOG JConfigurator representation. This
translation into the ILOG-specific representation is realized using an XSLT
stylesheet (Kay, 2000). Such a stylesheet must be provided for each
configuration environment where a corresponding knowledge base generation
should be supported.

T eCOM

analog_subscri bers : 1..1000
dig ital_subscribers : 1..1000
end_user_devices : 1 ..3000
country : enum{"AUT ","GB","FRA",...}

<<Class>>

Germ anManual

version : enum{"3.0"}

<<Class>>
Engl ishM anual

version : enum {"2.0"}

<<Class>>

IPVoice

version : enum{"1.0","2.0"}
m ax_users : 10..1000
country : enum{"AUT ","GB","FRA",...}

<<Class>>
XPressions

version : enum {"2.0","3.0"}
max_users : 10..1000
country : enum {"AUT ","GB","FRA",...}

<<Class>>

Features

basicSystem : enum{"G9","G19","G29"}
ipVoice : Boolean
xPressions : Boolean
m onitoringSW : Boolean
support : Boolean
additi onalServerPC : Boolean
m anual : Boolean
ioInterface : Boolean
switch ingSW : Boolean
rackCapaci ty : 1 ..5

<<Class>>

Support

service : enum{"phone","rem ote","local ","premium "}

<<Class>>

0..10..1
0..10..1

1..11..1

0..10..1
Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<Class>>

0..10..1

�������!	�������������������
����"�
���##������������
������������������

10 Rules defining restrictions on the syntactic usage of the modeling concepts.
11 The configuration model is translated into an XML representation in order to
alleviate further transformation operations (e.g. XSLT transformations).

���������������
�
�
���������������
���������������
���������

7

���
�����	��� �������� ���� 	������
��	�

������
�������
Up to now we have discussed basic representation concepts and tasks supported by
the CAWICOMS Knowledge Acquisition Component. As stated in the introduction,
this component should support knowledge sharing between different configuration
environments in order to enable effective communication between the underlying
configuration systems. The CAWICOMS Configuration Server Backend (see Figure
1) is responsible for coordinating the distributed configuration process. Partial
product models imported from remote configuration knowledge bases are integrated
into the local configuration model of the Main Configurator. These imported product
models can be seen as a functional view on the complete configuration model only
seen by the supplier configurator. In order to support their integration into the
CAWICOMS environment, the functional description must be formulated in GCL.
This approach is similar to the integration of simple product catalogue information
(Fensel, Ding, Omelayenko, Schulten, Botquin, Brown, Flett, 2001) in electronic
marketplace environments, where proprietary supplier catalogs are translated into
the representation of the marketplace environment. In CAWICOMS this basic
functionality is also provided for configurable products.

��� ������	����
�
In recent years several fields of AI focused research on the improvement of the
inter-operability of knowledge-based systems by developing and sharing ontologies.
In (Chandrasekaran, Josephson and Benjamins, 1999) an ontology is defined as a
theory about the sorts of objects, properties of objects, and relationships between
objects that are possible in a specified domain of knowledge. In (Soininen et. al,
1998) such an ontology is defined for the configuration domain. This ontology is
based on the frame ontology of Ontolingua (Gruber, 1992) and represents a
synthesis of resource-based, function-based, connection-based, and structure-based
approaches to represent configuration problems. Similar concepts are contained in
the CAWICOMS configuration knowledge representation language, whereby
precise semantics for the used concepts are given by the formulation of rules for
translating the UML representation into the representation of the corresponding
configuration system. The proposed approach to represent configuration knowledge
using techniques from Software Engineering is very similar to currently developed
knowledge representation techniques in the context of the Semantic Web (Fensel,
van Harmelen, Horrocks, McGuiness, and Patel-Schneider, 2001). Within
CAWICOMS, we currently compare both approaches w.r.t. their applicability to
support Web-based distributed configuration. First results indicate that Semantic
Web approaches provide a well defined semantics for the included modeling
concepts and support a complete representation of ontologies using basic XML
techniques (which will also be the case in future versions of UML).

��� �����
������
State-of-the-art configuration systems are typically standalone systems not
supporting supply-chain integration of configurable products and services. Those
systems are based on proprietary knowledge representation formalisms which

��������������
�
�
���������
��
���������������
���������������
���������

8

complicate knowledge acquisition tasks and the integration of those systems in order
to support distributed configuration processes. The goal of the CAWICOMS project
is the development of an integration platform for such systems which supports a
personalized, distributed configuration process. In this paper, we focused on the
discussion of the CAWICOMS Knowledge Acquisition Component which is based
on the extension concepts provided by the Unified Modeling Language. This
component supports a standardized representation of configuration problems and
configuration knowledge interchange between different configuration environments.
�
�����������

1. Chandrasekaran B, Josephson J, Benjamins R. What Are Ontologies, and Why do we Need Them?

IEEE Intelligent Systems, 14,1:20-26, 1999.
2. Clark T, Evans E, Kent St, Sammut P. The MMF Approach to Engineering Object-Oriented Design

Languages, Workshop on Language Descriptions, Tools and Applications, April 2001.
3. Cranefield S and Purvis M. UML as an Ontology Modelling Language. In Proceedings of the

Workshop on Intelligent Information Integration, 16th International Conference on Artificial
Intelligence, Stockholm, Sweden, 1999.

4. D‘Souza D, Wills AC. Object Components and Frameworks with UML – The Catalysis Approach.
Addison Wesley, 1998.

5. Evans AS, Kent S. Meta-modelling semantics of UML: the pUML approach. The Second
International Conference on the Unified Modeling Language. Editors: Rumpe B and France RB,
Colorado, LNCS 1723, 1999.

6. Fensel D, van Harmelen F, Horrocks I, McGuiness D, Patel-Schneider P.F. OIL: An Ontology
Infrastructure for the Semantic Web, IEEE Intelligent Systems, 16,2:38-45, 2001.

7. Fensel D, Ding Y, Omelayenko B, Schulten E, Botquin G, Brown M, Flett A. Product Data
Integration in B2B E-Commerce, IEEE Intelligent Systems, 16,4:54-59, 2001.

8. Gruber T. Ontolingua: A mechanism to support portable ontologies. Technical Report KSL 91-66,
1992.

9. Junker U. Preference-programming for Configuration, 3URF��,-&$,
�����&RQILJXUDWLRQ�:RUNVKRS,
Seattle, Wa, August, 2001.

10. Kay M. XSLT Programmer’s Reference. Wrox Press, 2000.
11. Männistö T, Martio A, Sulonen R. Modelling generic product structures in STEP. Computer-Aided

Design, 30,14:1111-1118, 1999.
12. PineII BJ, Victor B, Boynton AC. Making Mass Customization Work. Harvard Business Review,

Sep./Oct. 1993:109-119, 1993.
13. Rumbaugh J, Jacobson I, Booch G. The Unified Modeling Language Reference Manual. Addison

Wesley, 1998.
14. Soininen T, Tiihonen J, Männistö T, Sulonen R. Towards a General Ontology of Configuration.

AIEDAM – AI Engineering Design Analysis and Manufacturing Journal, Special Issue:
Configuration Design, 12,4:357-372, 1998.

15. ISO Standard 10303-1: Industrial automation systems and integration – Product data representation
and exchange – Part 1: Overview and fundamental principles, 1994.

16. W3C. Extensible Markup Language (XML). www.w3c.org, 1999.
17. Warmer J, Kleppe A. The Object Constraint Language – Precise Modeling with UML. Addison

Wesley Object Technology Series, 1999.

