Recommender Systems: Value, Methods, Measurements

Dietmar Jannach, University of Klagenfurt, Austria
dietmar.jannach@aau.at

Presented at the ACM Latin-American Summer School on Recommender Systems
LARS 2019, Fortaleza, Brazil
Outline

• What are Recommender Systems and what is their value?
• How do we build Recommender Systems and how do we know they work well?
• (Pointers to other lectures in the summer school)
Recommender Systems

- A pervasive part of our daily online user experience
- One of the most widely used applications of machine learning
Applications

- News
- Books
- Videos
- Music
- Games
- Shopping goods
- Friends
- Groups
- Jobs
- Apps
- Restaurants
- Hotels
- Deals
- Partners
- ...
- Cigars
- Software code
- ...
The Value of Recommender Systems
What’s their purpose and value?

• Why should we use recommender systems?
 – Recommenders can have value both for consumers and the providers of the recommendations
 – Academic research (implicitly) mostly focuses on the consumer perspective
 – There can be even more stakeholders
 • Leading to multi-stakeholder recommendation problems
 • See also the lecture on Fairness in Recommender Systems

Potential value for the consumer

• Examples:
 – Help users find objects that match their long-term preferences (information filtering)
 – Help users explore the item space and improve decision making
 – Make contextual recommendations, e.g.,
 • Show alternatives
 • Show accessories
 – Remind users of what they liked in the past
 – Actively notify consumers of relevant content
 – Establish group consensus
Potential value for the provider

• Examples:
 – Change user behavior in desired directions
 – Create additional demand
 – Increase (short term) business success
 – Enable item “discoverability”
 – Increase activity on the site and user engagement
 – Provide a valuable add-on service
 – Learn more about the customers
Multi-stakeholder considerations

• When goals are fully aligned
 – Better recommendations can lead to more satisfied, returning customers who find what they need
 – This is one implicit assumption of academic research

• When there can be a goal conflict
 – Not all recommendable items may have the same business value
 – From a business perspective, it might be better to recommend items with a higher sales margin
 • As long as the recommendations are still reasonable
Measuring the business value

• Typical quotes about value

“35% of Amazon.com’s revenue is generated by its recommendation engine.”

“We think the combined effect of personalization and recommendations save us more than $1B per year.”

“Netflix says 80 percent of watched content is based on algorithmic recommendations”

Measuring the business value

• Measuring the business value can be difficult
 – What does it tell us that 80% of the watched content comes from the recommendations?
 – Where do the said savings come from?

• The used measures often largely depend on
 – The business model of the provider
 – The intended effects of the recommendations
 – Assumptions about consumer value
What is measured?

- Considering both the **impact** and **value** perspective

Click-Through Rates

- Measures how many clicks are garnered by recommendations
 - Popular in the news recommendation domain
 - **Google News**: 38% more clicks compared to popularity-based recommendations
 - **Forbes**: 37% improvement through better algorithm compared to time-decayed popularity based method
 - **swissinfo.ch**: Similar improvements when considering only short-term navigation behavior
 - **YouTube**: Almost 200% improvement through co-visititation method (compared to popular recommendations)
Adoption and Conversion Rates

- CTR usually not the ultimate measure
 - Cannot know if users actually liked/purchased what they clicked on (consider also: click bait)

- Therefore
 - Various, domain-specific adoption measures common

- YouTube, Netflix: “Long CTR”/ “Take rate”
 - only count click if certain amount of video was watched
Adoption and Conversion Rates

- Alternatives when items cannot be viewed/read:
 - eBay:
 - “purchase-through-rate”, “bid-through-rate”
 - Other:
 - LinkedIn: Contact with employer made
 - Paper recommendation: “link-through”, “cite-through”
 - E-Commerce marketplace: “click-outs”
 - Online dating: “open communications”, “positive contacts per user”
Sales and Revenue

• CTR and adoption measures are good indicators of relevant recommendations

• However:
 – Often unclear how this translates into business value
 – Users might have bought an item anyway
 – Substantial increases might be not relevant for business when starting from a very low basis

• In addition:
 – Problem of measuring effects with flat-rate subscription models (e.g., Netflix).
Sales and Revenue

• Only a few studies, some with limitations
 – **Video-on-demand study**: 15% sales increase after introduction (no A/B test, could be novelty effect)
 – **DVD retailer study**:
 • 35% lift in sales when using purchased-based recommendation method compared to “no recommendations”
 • Almost no effects when recommendations were based on view statistics
 • Choice of algorithm matters a lot
Sales and Revenue

• e-grocery studies:
 – 1.8 % direct increase in sales in one study
 – 0.3 % direct effects in another study
 – However:
 • Up to 26% indirect effects, e.g., where customers were pointed to other categories in the store
 • “Inspirational” effect also observed in music recommendation in our own work

• eBay:
 – 6 % increase for similar item recommendations through largely improved algorithm
 – (500 % increase in other study for specific area)
Sales and Revenue

• Book store study:
 – 28% increase with recommender compared with “no recommender”; could be seasonal effects
 – Drop of 17% after removing the recommender

• Mobile games (own study)
 – 3.6% more purchases through best recommender
 – More possible
Effects on Sales Distributions

• Goal is maybe not to sell *more* but *different* items

• Influence sales behavior of customers
 – stimulate cross-sales
 – sell off on-stock items
 – promote items with higher margin
 – long-tail recommendations
Effects on Sales Distributions

• Premium cigars study:
 – Interactive advisory system installed
 – Measurable shift in terms of what is sold
 • e.g., due to better-informed customers
Effects on Sales Distributions

• Netflix:
 – Measure the “effective catalog size”, i.e., how many items are actually (frequently) viewed
 – Recommenders lead users away from blockbusters
 • Could also be beneficial in terms of license costs

• Online retailer study:
 – Comparison of different algorithms on sales diversity
 – Outcomes
 • Recommenders tend to decrease the overall diversity
 • Might increase diversity at individual level though
User Behavior and Engagement

• Assumption:
 – Higher engagement leads to higher re-subscription rates (e.g., at Spotify)

• News domain studies:
 – 2.5 times longer sessions, more sessions when there is a recommender

• Music domain study:
 – Up to 50% more user activity

• LinkedIn:
 – More clicks on job profiles after recommender introduced
Discussion

• Direct measurements:
 – Business value can almost be directly measured
 – Limitations
 • High revenue might be easy to achieve (promote discounted products), but not the business goal
 • Field tests often last only for a few weeks; field tests sometimes only with new customers (e.g., at Netflix)
 • Long-term indirect effects might be missed
Discussion

• Indirect measurements:
 – CTR considered harmful
 • Recommendations as click-bait, but long term dissatisfaction possible
 • CTR optimization not in line with optimization for customer relevance
 • CTRs and improvements often easy to achieve, e.g., by changing the user interface or by focusing on already popular items
 – Adoption and conversion
 • Mobile game study: Clicks and certain types of conversions were not indicative for business value
 – Engagement
 • Difficult to assess when churn rates are already low
What to measure?

• The underlying questions:
 – What is the intended purpose of the system?
 – What kind of value should it create?

• Leading to:
 – What is a good recommendation in this context, i.e. one that serves any or all of these goals?
What to measure?

• Beware:
 – The same set of recommendations can be good or not, depending on the purpose, context, and application, e.g.,
 • Recommending already popular items can be good for the business or not
 • Recommending things, for example musical songs, that the user already knows can be desirable or not, depending on the user’s mood
 • Recommending a set of items that are very similar to each other might be helpful for the user or not, depending on their stage in the decision making process
The academic perspective

- In academia, we aim to
 - abstract from application specifics, and
 - develop generalizable methods
The predominant approach

• Most common task: “Find good items”
• Most common method: “offline experimentation” and accuracy optimization
• Approach
 – Find or create a dataset that contains historical information about which recommendable items were considered “good” for individual users
 – Hide some of the information
 – Predict the hidden information
 – Measure the accuracy of the predictions
Benefits & Limitations

• Benefits of this approach
 – Well-defined problem
 – Continuous improvement
 – Comparability & reproducibility

• Potential limitations
 – Being accurate is not enough, and higher accuracy not necessarily means better value for the user
 – The value for other stakeholders is not considered
 – Over-simplification of the problem

A conceptual framework

• Should help to decide what and how to measure (both in academia and industry)
• Layered structure – strategic to operational
• Considers two viewpoints

| Overarching goal of the system, strategic value |
| Recommendation purpose / Intended utility |
| System (algorithm) task |
| Computational metrics |
Framework overview

<table>
<thead>
<tr>
<th>Strategic Perspective</th>
<th>Consumer’s Viewpoint</th>
<th>Provider’s Viewpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overarching Goal</td>
<td>“Personal Utility”: Happiness, Satisfaction, Knowledge, ...</td>
<td>“Organizational Utility”: Profit, Revenue, Growth, ...</td>
</tr>
</tbody>
</table>
| **Recommendation Purpose** | • Help users find objects that match the user’s long-term preferences
 • Show alternatives
 • Help users explore or understand the item space
 • ... | • Change user behavior in desired directions
 • Create additional demand
 • Increase activity on the site
 • ... |
| **System Task** | • Annotate in context (i.e., estimate preference of a given item)
 • Find good items
 • Create diverse set of alternatives
 • Find suitable accessories
 • Retrieve novel but relevant items
 • ... | |
<p>| Operational Perspective | Computational Metric | Predictive accuracy (e.g., RMSE, MAE), classification accuracy (e.g., precision, recall, AUC), ranking and top-n accuracy (e.g., rank correlation, MRR, NDCG, etc.), item “discoverability” (diversity, novelty, or serendipity measures), recommendation biases (e.g., concentration or popularity biases) and blockbuster effects, survey-based user satisfaction scores, business- and domain-specific measures (e.g., conversion rates or click-through-rates), ... |</p>
<table>
<thead>
<tr>
<th>Strategic Perspective</th>
<th>Consumer’s Viewpoint</th>
<th>Provider’s Viewpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overarching Goal</td>
<td>"Personal Utility": Happiness, Satisfaction, Knowledge, Entertainment, Benefit</td>
<td>"Organizational Utility": Profit, Revenue, Return on Investment, Growth, Customer Retention</td>
</tr>
</tbody>
</table>
| **Recommendation Purpose** | • Help users find objects that match the user's long-term preferences
 • Show alternatives
 • Help users explore or understand the item space, ... | • Change user behavior in desired directions
 • Create additional demand
 • Help users discover new artists, directors, genres
 • Increase activity on the site
 • ... |
| **System Task** | • Annotate in context (i.e., estimate preference of a given item)
 Find good items
 • Create diverse set of alternatives
 • Find mix of familiar and relevant unknown items
 • Find suitable accessories
 • ... | |
<p>| Operational Perspective | Predictive accuracy (e.g., RMSE, MAE), classification accuracy (e.g., Precision, Recall, AUC), ranking and top-n accuracy (e.g., rank correlation, MRR, NDCG, etc.), item discoverability (diversity, novelty, or serendipity measures), recommendation biases (e.g., concentration or popularity biases) and blockbuster effects, survey-based user satisfaction scores, business- and domain-specific measures (e.g., conversion rates or click-through-rates), ... | |</p>
<table>
<thead>
<tr>
<th>Consumer’s Viewpoint</th>
<th>Provider’s Viewpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overarching Goal</td>
<td>"Organizational Utility": Profit, Revenue, Return on Investment, Growth, Customer Retention</td>
</tr>
<tr>
<td>"Personal Utility": Happiness, Satisfaction, Knowledge, Entertainment, Benefit</td>
<td></td>
</tr>
<tr>
<td>Recommendation Purpose</td>
<td>• Change user behavior in desired directions</td>
</tr>
<tr>
<td>• Help users find objects that match the user’s long-term preferences</td>
<td>• Create additional demand</td>
</tr>
<tr>
<td>• Show alternatives</td>
<td>• Help users discover new artists, directors, genres</td>
</tr>
<tr>
<td>• Help users explore or understand the item space, ...</td>
<td>• Increase activity on the site</td>
</tr>
<tr>
<td>System Task</td>
<td>• ...</td>
</tr>
<tr>
<td>• Annotate in context (i.e., estimate preference of a given item)</td>
<td></td>
</tr>
<tr>
<td>• Find good items</td>
<td></td>
</tr>
<tr>
<td>• Create diverse set of alternatives</td>
<td></td>
</tr>
<tr>
<td>• Find mix of familiar and relevant unknown items</td>
<td></td>
</tr>
<tr>
<td>• Find suitable accessories</td>
<td></td>
</tr>
<tr>
<td>• ...</td>
<td></td>
</tr>
<tr>
<td>Computational Metric</td>
<td>Predictive accuracy (e.g., RMSE, MAE), classification accuracy (e.g., Precision, Recall, AUC), ranking and top-n accuracy (e.g., rank correlation, MRR, NDCG, etc.), item discoverability (diversity, novelty, or serendipity measures), recommendation biases (e.g., concentration or popularity biases) and blockbuster effects, survey-based user satisfaction scores, business- and domain-specific measures (e.g., conversion rates or click-through-rates), ...</td>
</tr>
<tr>
<td>Consumer’s Viewpoint</td>
<td>Provider’s Viewpoint</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Overarching Goal</td>
<td>Organizational Utility: Profit, Revenue, Return on Investment, Growth, Customer Retention</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>- Change user behavior in desired directions</td>
</tr>
<tr>
<td>Knowledge</td>
<td>- Create additional demand</td>
</tr>
<tr>
<td>Entertainment</td>
<td>- Help users discover new artists, directors, genres</td>
</tr>
<tr>
<td>Benefit</td>
<td>- Increase activity on the site</td>
</tr>
<tr>
<td>Purpose</td>
<td>...</td>
</tr>
<tr>
<td>Recommendation Purpose</td>
<td>Operational Perspective</td>
</tr>
<tr>
<td>- Help users find objects that match the user’s long-term preferences</td>
<td>System Task</td>
</tr>
<tr>
<td>- Show alternatives</td>
<td>- Annotate in context (i.e., estimate preference of a given item)</td>
</tr>
<tr>
<td>- Help users explore or understand the item space, ...</td>
<td>- Find good items</td>
</tr>
<tr>
<td>Operational Perspective</td>
<td>- Create diverse set of alternatives</td>
</tr>
<tr>
<td>Computational Metric</td>
<td>- Find mix of familiar and relevant unknown items</td>
</tr>
<tr>
<td>Predictive accuracy (e.g., RMSE, MAE), classification accuracy (e.g., Precision, Recall, AUC), ranking and top-n accuracy (e.g., rank correlation, MRR, NDCG, etc.), item discoverability (diversity, novelty, or serendipity measures), recommendation biases (e.g., concentration or popularity biases) and blockbuster effects, survey-based user satisfaction scores, business- and domain-specific measures (e.g., conversion rates or click-through-rates), ...</td>
<td></td>
</tr>
<tr>
<td>Strategic Perspective</td>
<td>Consumer’s Viewpoint</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Overarching Goal</td>
<td>"Personal Utility": Happiness, Satisfaction, Knowledge, Entertainment, Benefit</td>
</tr>
</tbody>
</table>
| **Recommendation Purpose** | • Help users find objects that match the user's long-term preferences
• Show alternatives
• Help users explore or understand the item space, ... | • Change user behavior in desired directions
• Create additional demand
• Help users discover new artists, directors, genres
• Increase activity on the site
• ... |
| **System Task** | • Annotate in context (i.e., estimate preference of a given item)
• Find good items
• Create diverse set of alternatives
• Find mix of familiar and relevant unknown items
• Find suitable accessories
• ... | |
<p>| Computational Metric | Predictive accuracy (e.g., RMSE, MAE), classification accuracy (e.g., Precision, Recall, AUC), ranking and top-n accuracy (e.g., rank correlation, MRR, NDCG, etc.), item discoverability (diversity, novelty, or serendipity measures), recommendation biases (e.g., concentration or popularity biases) and blockbuster effects, survey-based user satisfaction scores, business- and domain-specific measures (e.g., conversion rates or click-through-rates), ... | |</p>
<table>
<thead>
<tr>
<th>Strategic Perspective</th>
<th>Consumer’s Viewpoint</th>
<th>Provider’s Viewpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overarching Goal</td>
<td>"Personal Utility": Happiness, Satisfaction, Knowledge, Entertainment, Benefit</td>
<td>"Organizational Utility": Profit, Revenue, Return on Investment, Growth, Customer Retention</td>
</tr>
</tbody>
</table>
| **Recommendation Purpose** | • Help users find objects that match the user's long-term preferences
• Show alternatives
• Help users explore or understand the item space, ... | • Change user behavior in desired directions
• Create additional demand
• Help users discover new artists, directors, genres
• Increase activity on the site
• ... |
| **Operational Perspective** | **System Task** | **Computational Metric** |
| | • Annotate in context (i.e., estimate preference of a given item)
• Find good items
• Create diverse set of alternatives
• Find mix of familiar and relevant unknown items
• Find suitable accessories
• ... | Predictive accuracy (e.g., RMSE, MAE), classification accuracy (e.g., Precision, Recall, AUC), ranking and top-n accuracy (e.g., rank correlation, MRR, NDCG, etc.), item discoverability (diversity, novelty, or serendipity measures), recommendation biases (e.g., concentration or popularity biases) and blockbuster effects, survey-based user satisfaction scores, business- and domain-specific measures (e.g., conversion rates or click-through-rates), ... |
<table>
<thead>
<tr>
<th>Strategic Perspective</th>
<th>Consumer’s Viewpoint</th>
<th>Provider’s Viewpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overarching Goal</td>
<td>"Personal Utility": Happiness, Satisfaction, Knowledge, Entertainment, Benefit</td>
<td>"Organizational Utility": Profit, Revenue, Return on Investment, Growth, Customer Retention</td>
</tr>
</tbody>
</table>
| **Recommendation Purpose** | - Help users find objects that match the user's long-term preferences
- Show alternatives
- Help users explore or understand the item space, ... | - Change user behavior in desired directions
- Create additional demand
- **Help users discover new artists, directors, genres**
- Increase activity on the site
- . . . |
| **System Task** | - Annotate in context (i.e., estimate preference of a given item)
- Find good items
- Create diverse set of alternatives
- Find mix of familiar and relevant unknown items
- Find suitable accessories
- . . . | |
<p>| Computational Metric | Predictive accuracy (e.g., RMSE, MAE), classification accuracy (e.g., Precision, Recall, AUC), ranking and top-n accuracy (e.g., rank correlation, MRR, NDCG, etc.), item discoverability (diversity, novelty, or serendipity measures), recommendation biases (e.g., concentration or popularity biases) and blockbuster effects, survey-based user satisfaction scores, business- and domain-specific measures (e.g., conversion rates or click-through-rates), . . . | |</p>
<table>
<thead>
<tr>
<th>Strategic Perspective</th>
<th>Consumer’s Viewpoint</th>
<th>Provider’s Viewpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overarching Goal</td>
<td>"Personal Utility": Happiness, Satisfaction, Knowledge, Entertainment, Benefit</td>
<td>"Organizational Utility": Profit, Revenue, Return on Investment, Growth, Customer Retention</td>
</tr>
</tbody>
</table>
| Recommendation Purpose | • Help users find objects that match the user's long-term preferences
• Show alternatives
• Help users explore or understand the item space, ... | • Change user behavior in desired directions
• Create additional demand
• **Help users discover new artists, directors, genres**
• Increase activity on the site
• ... |
| System Task | • Annotate in context (i.e., estimate preference of a given item)
• Find good items
• Create diverse set of alternatives
• **Find mix of familiar and relevant unknown items**
• Find suitable accessories
• ... | Predictive accuracy (e.g., RMSE, MAE), classification accuracy (e.g., Precision, Recall, AUC), ranking and top-n accuracy (e.g., rank correlation, MRR, NDCG, etc.), item discoverability (diversity, novelty, or serendipity measures), recommendation biases (e.g., concentration or popularity biases) and blockbuster effects, survey-based user satisfaction scores, business- and domain-specific measures (e.g., conversion rates or click-through-rates), ... |
<p>| Computational Metric | | |</p>
<table>
<thead>
<tr>
<th>Consumer's Viewpoint</th>
<th>Provider's Viewpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overarching Goal</td>
<td>"Personal Utility": Happiness, Satisfaction, Knowledge, Entertainment, Benefit</td>
</tr>
<tr>
<td></td>
<td>"Organizational Utility": Profit, Revenue, Return on Investment, Growth, Customer Retention</td>
</tr>
<tr>
<td>Recommendation Purpose</td>
<td>• Help users find objects that match the user’s long-term preferences</td>
</tr>
<tr>
<td></td>
<td>• Show alternatives</td>
</tr>
<tr>
<td></td>
<td>• Help users explore or understand the item space, ...</td>
</tr>
<tr>
<td></td>
<td>• Change user behavior in desired directions</td>
</tr>
<tr>
<td></td>
<td>• Create additional demand</td>
</tr>
<tr>
<td></td>
<td>• Help users discover new artists, directors, genres</td>
</tr>
<tr>
<td></td>
<td>• Increase activity on the site</td>
</tr>
<tr>
<td></td>
<td>• ...</td>
</tr>
<tr>
<td>System Task</td>
<td>• Annotate in context (i.e., estimate preference of a given item)</td>
</tr>
<tr>
<td></td>
<td>• Find good items</td>
</tr>
<tr>
<td></td>
<td>• Create diverse set of alternatives</td>
</tr>
<tr>
<td></td>
<td>• Find mix of familiar and relevant unknown items</td>
</tr>
<tr>
<td></td>
<td>• Find suitable accessories</td>
</tr>
<tr>
<td></td>
<td>• ...</td>
</tr>
<tr>
<td>Computational Metric</td>
<td>Predictive accuracy (e.g., RMSE, MAE), classification accuracy (e.g., Precision, Recall, AUC), ranking and top-n accuracy (e.g., rank correlation, MRR, NDCG, etc.), item discoverability (diversity, novelty, or serendipity measures), recommendation biases (e.g., concentration or popularity biases) and blockbuster effects, survey-based user satisfaction scores, business- and domain-specific measures (e.g., conversion rates or click-through-rates), ...?</td>
</tr>
</tbody>
</table>
Summary of value considerations

- Demonstrated business value of recommenders in many domains
- Size of impact however depends on many factors like baselines, domain specifics etc.
- Measuring impact is generally not trivial
 - Choice of the evaluation measure matters a lot
 - CTR can be misleading
- “Metric-Task-Purpose-Fit” to be considered
Methods
A common categorization

- Content-based Filtering
- Collaborative Filtering
- Hybrid Systems
- Knowledge-based Systems
Outline

• Content-based Filtering
• Collaborative Filtering
• Hybrid Systems
• Knowledge-based Systems

• Interactive Recommendation
Outline

• Content-based Filtering
• Collaborative Filtering
• Hybrid Systems
• Knowledge-based Systems
• Interactive Recommendation
Recommendation Principles

Recommender systems reduce information overload by estimating relevance
Recommendation Principles

Recommendations are usually personalized.
Content-based Filtering

Content-based:
"Show me more of the same what I've liked"
Outline

- Content-based Filtering
- Collaborative Filtering
- Hybrid Systems
- Knowledge-based Systems
- Interactive Recommendation
Collaborative Filtering

Collaborative:
"Tell me what's popular among my peers"

- User profile & contextual parameters
- Community data
- Recommendation component
- Recommendation list

<table>
<thead>
<tr>
<th>item</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>i1</td>
<td>0.9</td>
</tr>
<tr>
<td>i2</td>
<td>1</td>
</tr>
<tr>
<td>i3</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Collaborative Filtering

- The predominant approach since 1994
- Recent advances in later lecture in summer school
- The GroupLens system
 - User-item ratings as the only input

Matrix Completion - Limitations

- Amazon’s contextual recommendations are a guiding scenario in the literature
 - But there are no ratings
 - There apparently is not even personalization
Sequence-aware Recommenders

• Timely research topic
 – Consider interaction logs as input (in contrast to rating matrix)

• Session-based recommendation
 – Recommend to anonymous users, given only a few interactions

• Session-aware recommendation
 – Recommend to known users in the context of an ongoing session

Session-based Recommendation

- Also in online music recommendation
- Our user searched and listened to “Last Christmas” by Wham!
- Should we, ...
 - Play more songs by Wham!?
 - More pop Christmas songs?
 - More popular songs from the 1980s?
 - Play more songs with controversial user feedback?
Outline

- Content-based Filtering
- Collaborative Filtering
- Hybrid Systems
- Knowledge-based Systems

- Interactive Recommendation
Hybrid Recommendation Approach

Hybrid:
Combinations of various inputs and/or composition of different mechanism

User profile & contextual parameters
Community data
Product features
Knowledge models

<table>
<thead>
<tr>
<th>item</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>i1</td>
<td>0.9</td>
</tr>
<tr>
<td>i2</td>
<td>1.0</td>
</tr>
<tr>
<td>i3</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Outline

• Content-based Filtering
• Collaborative Filtering
• Hybrid Systems
• Knowledge-based Systems
• Interactive Recommendation
Knowledge-based Systems

Knowledge-based: "Tell me what fits based on my needs"
Is this even a recommender?
Is this even a recommender?
Is this even a recommender?
Outline

• Content-based Filtering
• Collaborative Filtering
• Hybrid Systems
• Knowledge-based Systems

• Interactive Recommendation
From Algorithms to User Experience

- Most academic research focuses on algorithmic aspects
 - e.g., learning to predict / “post-dict” hidden ratings
- But a recommender system is more than the algorithm, see later lectures
- The UI can have a huge impact on adoption
 - Garcin et al., for example, report a more than 100% increase in the CTR when changing the position of the recommendations

Structuring Existing Works

User

Preference Elicitation
- Ratings & Likes
- Preference Forms & Dialogs
- Critiquing
- Side-By-Side Comparison
- Personality Quizzes

Result Presentation and Feedback
- Result List Design & Visualization
- Feedback
- Proactivity
- Persuasion
- Explanations

Recommendation System

Summary of methods

- We found algorithmic works based on collaborative filtering to be dominant
 - Recently, sequence-aware recommenders were more in the focus
- In contrast, many questions regarding the design of a recommender system remain open
- The design space for the user interface, for example, is huge, but the literature is comparably scarce
Measurements
Evaluation approaches

• Testing a real application with real users
 – A/B tests (measuring, e.g., sales increase, CTR)

• Laboratory studies
 – Controlled experiments (measuring, e.g., satisfaction with the system), see later lecture

• Offline experiments
 – Simulations using on historical data (measuring, e.g., prediction accuracy, coverage)

• Theoretical analyses
 – For example, regarding scalability
Offline experiments

• Such experiments are, by far, the most common form of empirical research in the CS literature

• Main ingredients:
 – One or two historical dataset containing ratings or implicit feedback
 – A number of existing algorithms to compare the new proposal with
 – A number of established accuracy metrics (RMSE, Precision, Recall) and evaluation procedures to determine the metrics (e.g., cross-validation)
Sounds safe?

- All seems okay, “proving” progress in a reproducible way seems straightforward
 - At least one dataset should be public nowadays, so that others can replicate the results
 - The evaluation protocol and the metrics are well accepted and broadly known
 - The algorithmic proposals are usually laid out in great depth in the papers. Sometimes, even the source code is shared
Progress can still be limited

- Reason 1: “Proving” progress by finding a better model for a very specific experimental setup can be relatively easy
- Reason 2: The used metrics are not necessarily helpful to measure improvements as perceived by users in the first place
Potential issues w/ research practice

- Applied ML research often obsessed with accuracy and the hunt for the "best model"
 - "leaderboard chasing"
- But, there probably is no best model. The ranking of algorithms can depend on:
 - Given dataset
 - Used pre-processing steps
 - Evaluation measure
 - Choice of baselines
 - Optimization of baselines
Worrying observations

- Sometimes, it remains unclear if we truly make progress
 - Armstrong et al. (2009) find that there was not much progress within the previous ten years for a given Information Retrieval Task
 - Lin (2019) and Yang et al. (2019) found that ten years later problems with the choice of baselines still exist for deep learning methods
 - Rendle et al. (2019) run new experiments for classical recommendation tasks and find that recent methods are not necessarily better than previous ones
Worrying observations

- Makridakis (2018) compared various ML methods for time-series prediction, concluding that existing statistics-based methods are often better.
- Ludewig et al. (2018-2019) evaluated various session-based recommendation techniques, finding that simple methods are often very competitive.
- Ferrari Dacrema et al. (2019) examined recent neural top-n recommendation techniques and found potential issues in terms of the choice and optimization of baselines.
Potential ways forward

• Further increasing reproducibility is advocated
 – Reproducibility should be easy to establish
 • Many researchers use free software tools
 • Sharing images of the experimental environment is easy
 • Code should include everything from algorithm, over data-pre-processing and evaluation

• Choice and optimization of baselines as main problem
 – Often not clear what represents the state-of-the-art
 – Validation against optimized existing methods
Potential ways forward

• Toward more “theory-guided” research
 – Choice of dataset/pre-processing often seems arbitrary
 – Choice of evaluation procedures often seems arbitrary and not guided by an application problem
 • Various forms of measures used, cut-off lengths between one and several hundred, cross-validation/leave-one-out ...
Offline experiments and computational metrics in general

Reason 2 from above: The used metrics are not necessarily helpful to measure improvements as perceived by users in the first place

Generally:
- Being able to accurately predict the relevance of items for users is and will be a central problem of recommender systems research
- Increasing the prediction accuracy therefore can be a relevant goal of research
The problems with accuracy

- Accuracy alone is not enough
 - Recommending items that the user might have bought anyway might be of little business value
 - Focusing on accuracy alone can lead to monotone recommendations (e.g., only movies from the Star Wars series) and limited discovery
 - Optimizing for accuracy might lead to recommendations that are considered too “obscure” for users
 - Familiarity with some recommendations might be important to increase the user’s trust in a system
Multi-metric evaluations

- One possible way forward
- Offline experimentation can assess multiple, possibly competing, goals in parallel (see later lecture in the summer school)
 - Accuracy
 - Diversity
 - Novelty
 - Serendipity
 - Long-term effects, e.g., on reinforcement effects
 - Business value for multiple stakeholders
 - Scalability ...
The problems of offline experiments

- Are offline experiments actually predictive of the perceived value?
 - Gomez-Uribe and Hunt (2015), Netflix, found that offline experiments were not found “to be as highly predictive of A/B test outcomes as we would like.”
 - In fact, a number of user studies did not find that algorithms with higher prediction accuracy led to better quality perceptions by study participants
Possible steps forward

• Toward a more comprehensive approach to recommender systems research
 – Considering the user in the loop
 – Considering the business value for one or more stakeholders
 – Use a richer methodological repertoire

• See later lecture in this summer school

Possible steps forward

• “From algorithms to systems”
User-centric research

- Much richer conceptual models of recommender systems and their impact exist in the field of Information Systems
 - Algorithms are only one of many components
 - Apparently limited knowledge of these works in the computer science community

A conceptual model
Example validation

Diagram Description

- **User Perceived Quality**
 - Explanation
 - Interaction Adequacy
 - Recommendation Accuracy
 - Recommendation Novelty
 - Recommendation Diversity
 - Information Sufficiency
 - Interface Adequacy

- **User Beliefs**
 - Transparency ($R^2 = 0.16$)
 - Control ($R^2 = 0.40$)
 - Perceived Usefulness ($R^2 = 0.83$)

- **User Attitudes**
 - Trust & Confidence ($R^2 = 0.56$)
 - Overall Satisfaction ($R^2 = 0.47$)
 - Perceived Ease of Use ($R^2 = 0.53$)

- **Behavioral Intentions**
 - Purchase Intention ($R^2 = 0.40$)
 - Use Intentions ($R^2 = 0.40$)

Statistical Significance

- **Dashed Lines**
 - Paths of TAM

- **Verified Paths**
 - $p < 0.05$
 - $p < 0.1$
Takeaways

• Computer Science research is mostly focused on algorithms
• But the value of improvements in terms of abstract computational measures is limited or non-existent
 – E.g., due to the used research methodology
• There are many more interesting and relevant questions than algorithms
• Thank you for your attention
• dietmar.jannach@aau.at
User studies: Examples

• **Example 1:** User perception of session-based music recommendations

Background

- Various methods for session-based recommendation proposed in recent years
- Competing offline accuracy evaluation results:
 a. Method based on RNNs better than certain baselines using item-based nearest neighbors (Hidasi et al., 2015 and later)
 b. Simple heuristic and session-based nearest neighbors often better than RNNs (Ludewig et al. 2017 and later)
Motivation and setup

• Assess how users perceive the recommendation quality in different dimensions

• **Experimental setup:**
 – Develop an online application for study participants to interact with
 – Participants select a start track and the application creates and plays a playlist
 – Participants can skip or like tracks, leading to updates of the playlist
 – Participants fill out a questionnaire at the end
Experimental details

• Different recommendation algorithms tested
 – Simple association rules AR (“customers who bought”)
 – Collocated Artists Greatest Hits (CAGH)
 – GRU4REC: An RNN-based method
 – S-KNN: A session-based nearest neighbor method
 – SPOTIFY: Recommendations were retrieved only through Spotify’s API
Experiment details

• All user actions are recorded
• Feedback for each track collected
• Post-task questionnaire covers, e.g., aspects of
 – suitability of the tracks with respect to the start track
 – the adaptation of the playlist to the preferences
 – the diversity of the recommendations
 – the novelty of the recommendations
 – the intention to reuse the system
• Feedback was collected using 7-point Likert scale items
User interface
User interface

Would you like to participate in a study to help improve song recommendations?

1. Do you know the track?
 - Yes
 - No

2. Does the track match the previously liked tracks?

3. Do you like the track in general?
<table>
<thead>
<tr>
<th>Question</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>I liked the automatically generated radio station.</td>
</tr>
<tr>
<td>Q2</td>
<td>The radio suited my general taste in music.</td>
</tr>
<tr>
<td>Q3</td>
<td>The tracks on the radio musically matched the track I selected in the beginning.</td>
</tr>
<tr>
<td>Q4</td>
<td>The radio was tailored to my preferences the more positive feedback I gave.</td>
</tr>
<tr>
<td>Q5</td>
<td>The radio was diversified in a good way.</td>
</tr>
<tr>
<td>Q6</td>
<td>The tracks on the radio surprised me.</td>
</tr>
<tr>
<td>Q7</td>
<td>I discovered some unknown tracks that I liked in the process.</td>
</tr>
<tr>
<td>Q8</td>
<td>I am participating in this study with care so I change this slider to two.</td>
</tr>
<tr>
<td>Q9</td>
<td>I would listen to the same radio station based on that track again.</td>
</tr>
<tr>
<td>Q10</td>
<td>I would use this system again, e.g., with a different first song.</td>
</tr>
<tr>
<td>Q11</td>
<td>I would recommend this radio station to a friend.</td>
</tr>
<tr>
<td>Q12</td>
<td>I would recommend this system to a friend.</td>
</tr>
</tbody>
</table>
Running the experiment

• Used Amazon Mechanical Turk crowdworkers
 – 50 for reach treatment group in the end
 – Removed quite a number of non-attentive participants to ensure high quality
 – Applied additional quality criteria in advance

• Task details
 – Participants had to listen to at least 15 tracks (30 secs excerpts)
 – Average pure listening time of 5.5 minutes
Result analysis

• Number of Likes:
 – From 4.48 (Spotify) to 6.48 (AR)

• Popularity of recommendations:
 – Spotify and GRU4REC with the least popular / novel recommendations
 – Popularity highly correlates with number of Likes

• Match of next track with previous ones
 – S-KNN and CAGH work best, AR has the weakest scores
Result analysis

• Ratings for tracks
 – Even though AR received the most likes, they received, on average, the lowest rating scores
 – **Reason:** Many 1-star ratings for apparently bad recommendations
 – **Some insights:**
 • Optimizing for likes can be misleading
 • One should consider the role of (too) bad recommendations
Result analysis

- Selected questionnaire results:
 - S-KNN recommendations were generally more liked than those of AR, GRU4REC, and Spotify
 - S-KNN recommendations were often considered a good match for the selected seed tracks
 - AR works poor in many dimensions
 - No differences in terms of diversification and surprise were found
 - Spotify excelled in terms of discovery
 - In terms of intention to reuse, S-KNN, CAGH, and Spotify scored highest
Result analysis

- Additional indications:
 - High ratings and/or many likes are not the only factors contributing to system reuse
 - Discovery appears to be a central factor
 - Participants stated that they will re-use the Spotify-based system despite the higher novelty and the lower prediction accuracy
 - Running offline experiments revealed that Spotify scored very, very low on typical measures like Precision and Recall
Offline Results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>P@5</th>
<th>R@5</th>
<th>HR@5</th>
<th>MRR@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-KNN</td>
<td>0.271</td>
<td>0.044</td>
<td>0.137</td>
<td>0.077</td>
</tr>
<tr>
<td>GRU4REC</td>
<td>0.161</td>
<td>0.028</td>
<td>0.151</td>
<td>0.096</td>
</tr>
<tr>
<td>AR</td>
<td>0.234</td>
<td>0.037</td>
<td>0.135</td>
<td>0.081</td>
</tr>
<tr>
<td>CAGH</td>
<td>0.172</td>
<td>0.024</td>
<td>0.052</td>
<td>0.026</td>
</tr>
<tr>
<td>SPOTIFY</td>
<td>0.009</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Limitations

• Key challenges of user studies lie, e.g., in
 – controlling the experimental conditions
 – making sure that the findings are generalizable to at least a certain subset of the user population

• In our case, e.g.,:
 – Participants did not use a real-world system and they were not listening in a “natural” environment
 – The motivation of participants might be varying
 – The representativeness of the participant sample from Mechanical Turk might not be entirely clear
Summary of main findings

• Spotify
 – These recommendations would have led to terrible performance values in offline experiments
 – Still, they were well-received by the users
 – Spotify’s recommendations help the purpose of discovery, which seems central for such an application

• S-KNN
 – was not only good in the offline setting, but led to good results also in terms of the quality perception

• AR
 – Good in terms of likes, but many poor recommendations
Literature

- “The Neural Hype and Comparisons Against Weak Baselines” by Lin
 - SIGIR Forum 52, 2 (Jan. 2019), 40–51u
- “Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models” by Yang et al.
 - SIGIR 2019
- “Statistical and Machine Learning forecasting methods: Concerns and ways forward” by Makridakis et al.
 - PLOS ONE, 2018
Literature

- “Evaluation of Session-based Recommendation Algorithms”,
 “Performance Comparison of Neural and Non-Neural Approaches to
 Session-based Recommendation” by Ludewig et al.
 - UMUAI 2018, RecSys 2019
- “Are We Really Making Much Progress? A Worrying Analysis of
 Recent Neural Recommendation Approaches” by Dacrema et al.
 - RecSys 2019