
Semantic Configuration Web Services
in the CAWICOMS Project

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Zanker

Computer Science and Manufacturing, Universität Klagenfurt Universitätsstrasse 65-67,
9020 Klagenfurt, Austria

{felfernig, friedrich, jannach, zanker}@ifit.uni-klu.ac.at

Abstract. Product configuration is a key technology in today’s highly specialized
economy. Within the scope of state-of-the-art B2B frameworks and eProcurement
solutions, various initiatives take into account the provision of configuration ser-
vices. However, they all are based on the idea of defining quasi-standards for
many-to-many relationships between customers and vendors. When moving to-
wards networked markets, where suppliers dynamically form supply-side consor-
tia, more flexible approaches to B2B integration become necessary. The emerging
paradigm of Web services has therefore a huge potential in business application
integration. This paper presents an application scenario for configuration Web ser-
vices, that is currently under development in the research project CAWICOMS1.
An ontology-based approach allows the advertisement of services and a config-
uration specific protocol defines the operational processes. However, the lack of
standards for the semantic annotation of Web services is still a major shortcoming
of current Web technology.

1 Introduction

The easy access to vast information resources offered by the World Wide Web (WWW)
opens newperspectives for conducting business. State-of-the-art electronicmarketplaces
enable many-to-many relationships between customers and suppliers, thus replacing in-
flexible one-to-one relations dating to the pre-internet era of EDI (electronic data inter-
change). The problem of heterogeneity of product and catalogue descriptions as well as
inter-companyprocess definitions is resolvedby imposing a common standard on allmar-
ket participants. The non-existence of a single standard for conducting B2B electronic
commerce constitutes a major obstacle towards innovation. Examples for competing and
partly incompatible B2B frameworks are OBI, RosettaNet, cXML or BizTalk [25]. They
all employ XML2 as a flexible data format definition language, that allows to communi-
cate tree structures with a linear syntax; however, content transformation between those
catalog and document standards is far from being a trivial task [8]. The issue of market-
place integration mechanisms for customizable products is far more complex, because

1 CAWICOMS is the acronym for “Customer-Adaptive Web Interface for the Configuration of
Products and Services with Multiple Suppliers”. This work was partly funded by the EC through
the IST Programme under contract IST-1999-10688 (http://www.cawicoms.org).

2 See http://www.w3c.org/xml for reference.

I. Horrocks and J. Hendler (Eds.): ISWC 2002, LNCS 2342, pp. 192–205, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Semantic Configuration Web Services in the CAWICOMS Project 193

products have characterizing attributes that offer a range of different choices. Customers
are enabled to configure goods and services according to their individual needs at no
extra cost following the paradigm of mass customization [23]. Product configuration
systems (configurators) support sales engineers and customers in coping with the large
number of possible variants and product constellations.
The goal of the research project CAWICOMS is to enable configuration systems to deal
simultaneously with configurators of multiple suppliers over the Web. This allows for
end-to-end selection, ordering and provisioning of complex products and services sup-
plied by an extended value chain. We employ an ontology-based approach that builds
on the flexible integration of these configuration Web services. Furthermore, it can be
shown how the capability of each configuration system can be described on the semantic
level using an application scenario from the telecommunication domain. For representa-
tion of the semantic descriptions the evolving language standard of the ’Semantic Web’
initiative [3], [12], OIL resp. DAML+OIL [9] is employed.
In Section 2 we start by giving an overview on the application domain. In Section 3 we
describe the Web service architecture and in Section 4 a multi-layer ontology definition
for our application domain is given. The interaction processes between the Web service
providers and requestors are discussed in Section 5.

2 Application Scenario

Easy access to the corporate network and secure connections to business partners is
crucial in today’s economy. Virtual Private Networks (VPN) extend the intranet of a
possibly multi-national company and are capable of meeting the access requirements at
reduced cost using the worldwide IP network services and dedicated service provider
IP backbones. VPN infrastructures are designed to be flexible and configurable in order
to be able to cope with a rich variety of possible customer requirements. Therefore,
the establishment of some concrete VPN involves different steps after determination
of customer requirements like locations to be connected or specification of required
bandwidth: selection of adequate access facilities from the customer site to some entry
point to the VPN backbone, reservation of bandwidth within the backbone, as well as
configuration of routing hardware and additional services like installation support.
Note, that it is very unlikely that all these products and services needed for the provision
of such a VPN can be supplied by one single organization, but are in general made
available by different specialized solution providers, e.g., Internet Service Providers,
telecommunication companies or hardware manufacturers (see Figure 1). Therefore,
VPNs are typically marketed by specialized resellers (or telecommunication companies
like two of our application partners) that integrate the services of individual suppliers
and offer complete VPN solutions to their customers.

The integrator/reseller company contracts with the customer and determines - ac-
cording to the geographic location of the different sites and the qualitative requirements
with regards to bandwidth, quality of service or cost limits - the layout of the network
service. This configuration task includes the selection of adequate access facilities from
the customer site to some entry point of a VPN backbone, reservation of bandwidth
within the backbone, as well as parameter setting for routing hardware and configura-

194 Alexander Felfernig et al.

Provider Interconnect

IP LAN

CE

PE

P

M

AG Access Gateway

PE Provider Edge Router

P Provider Core Router

M Modem Rack

G Internet Gateway

G

Internet

PI

AG

CE Customer Edge Router

PI

Fig. 1. IP-VPN sketch

tion of additional services like installation support. Considerable parts of this service
package will then be sourced from the specialized solution providers [7].

3 CAWICOMS Environment

In the given application scenario, problemsolving capabilities are distributed over several
business entities that need to cooperate on a customer request for joint service provision.
This Peer-to-Peer (P2P) interaction approach among a dynamic set of participants with-
out a clear assignment of client and server roles asks for applying the paradigm ofWeb
services [17]. It stands for encapsulated application logic that is open to accept requests
from any peer over the Web.

3.1 Web Services

Basically, a Web Service can be defined as an interface that describes a collection of
provided operations. In the following we interpret the application logic that configures a
product as a standardized Web service. It can be utilized by interface agents interacting
with human users in aWeb shop aswell as by agents that outsource configuration services
as part of their problem solving capabilities. When implementing a Web Service the
following issues need to be addressed [17]:

Semantic Configuration Web Services in the CAWICOMS Project 195

– Service publishing - the provider of a service publishes the description of the service
to a service registry which in our case are configuration agents with mediating
capabilities. Within this registry the basic properties of the offered configuration
service have to be defined in such a way that automated identification of this service
is possible.

– Service identification - the requestor of a service imposes a set of requirements
which serve as the basis for identifying a suitable service. In our case, we have to
identify those suppliers, that are capable of supplying goods or services that match
the specific customer requirements.

– Service execution - once a suitable service has been identified the requirements
need to be communicated to the service agent that can be correctly interpreted and
executed. UDDI, WSDL, and SOAP are the evolving technological standards that
allow the invocation of remote application logic based on XML syntax.

Following the vision behind the Semantic Web effort [3,12], the sharing of semantics
is crucial to enable the WWW for applications. In order to have agents automatically
searching, selecting and executing remote services, representation standards are needed
that allow the annotation of meaning of a Web service which can then be interpreted by
agents with the help of ontologies.

3.2 Ontologies

In order to define a common language for representing capabilities of configurable prod-
ucts and services we use a hierarchical approach of related ontologies [11,4]. Ontologies
are employed to set a semantic framework that enables the semantic description of Web
services in the domain of product configuration. Furthermore, we follow the proposal
of [10] to structure the ontological commitments into three hierarchy levels (see Figure
2), namely the generic ontology level, the intermediate level and the domain level.

– Generic ontology level -Mostmodeling languages include some kind ofmeta-model
for representing classes and their relationships (e.g. the frame ontology of Ontolin-
gua [11], the UML meta-model [24] or the representation elements of ontology
languages such as OIL or DAML+OIL). Such a meta-model can be interpreted as
a generic level ontology. Example modeling concepts included in those ontologies
are frame, class, relation, association, generalization, etc.

– Intermediate ontology level - the basic modeling concepts formulated on the generic
ontology level can be refined and used in order to construct an intermediate ontol-
ogy which includes wide-spread modeling concepts used in the domain. Such an
ontology for the configuration domain is discussed in [26] who introduce compo-
nent types, function types, port types and different kinds of constraints as basic
configuration domain specific modeling concepts.

– Domain ontology level - finally, using the modeling concepts of the intermediate
level, we are able to construct application domain specific ontologies (e.g. network
services), which can also be denoted as a configuration models.

Note, that similar approaches to structure ontologies are already implemented in a set
of ontology construction environments (e.g. [11]). Our contribution in this context is to
illustrate their application for integrating configuration systems.

196 Alexander Felfernig et al.

3.3 Interaction Scenario

In the following we sketch our Web service scenario that focuses on enabling automated
procurement processes for customisable items (see Figure 2). Basically there exist two
different types of agents, those that only offer configuration services (L) and those that
act as suppliers as well as requestors for these services (I). The denotation of agent types
derives from viewing the informational supply chain of product configuration as a tree3,
where a configuration system constitutes either an inner node (I) or a leaf node (L).
Agents of type I have therefore the mediating functionality incorporated, that allows the
offering agents to advertise their configuration services. Matchmaking for service iden-
tification is performed by the mediating capability that is internal to each configurator
at an inner node. It is done on the semantic level that is eased by multi-layered ontolog-
ical commitments (as discussed in the preceding subsection) among participants. It is
assumed that suppliers share application domain ontologies that allow them to describe
the capabilities of their offered products and services on the semantic level. An approach
that abstracts from syntactical specifics and proposes a reasoning on the semantic level
also exists for transforming standardized catalog representations in [8]. An abstract
service description can be interpreted as a kind of standardized functional description
of the product4. Furthermore, agents in the role of customers (service requestors) can
impose requirements on a desired product; these requirements can be matched against
the functional product description provided by the suppliers (service providers). If one
or more supplier descriptions match with the imposed requirements, the corresponding
configuration service providers can be contacted in order to finally check the feasibility
of the requirements and generate a customized product/service solution.

4 Multi-layer Ontology Definition

As sketched in Figure 2 the semantic descriptions of the offered configuration services
are based on the three layer approach of [10]. The creation of service profiles for each
involved configuration system is supported by a set of knowledge acquisition tools, that
allow the definition of the product structure with a graphical UML-based notation with
precise semantics [5]. Using translators these implementation independent models are
translated into proprietary knowledge bases of problem solving engines such as the Java-
based JConfigurator from ILOG5 [14].
However, in the following we will describe our approach employing DAML+OIL as a
language for the Semantic Web with precise model theoretic semantics. The correspon-
dence between representation concepts needed for modeling configuration knowledge
bases and DAML+OIL is shown in [6]. The uppermost layer of our ontology is the
generic ontology level. At this level the basic representation concepts and ontological
modeling primitives are introduced. These are inherent to the concepts of the modeling
language such as class and slot definitions in OIL. Therefore, it meets the expectations

3 Note, that only the required configuration services are organized in a tree structure, which must
not hold for the involved companies in the value chain of a product.

4 In [18] this kind of description is denoted as a functional architecture of the configured product.
5 See http://www.ilog.com for reference.

Semantic Configuration Web Services in the CAWICOMS Project 197

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures

LDAPConnector : Boolean
voiceMail : Boolean
whiteboard : Boolean
protocol : enum{"T.120","H.320","H.323"}
conferenceFunction : Boolean
gatewayH320toH323 : Boolean
pc2PhoneConn : Boolean
startPackage : enum{"standard","deluxe","comfort"}
manual : Boolean

<<ComponentType>>

IPVServerPC

keyboard : Boolean
monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}
ipVoice : Boolean
xPressions : Boolean
monitoringSW : Boolean
support : Boolean
additionalServerPC : Boolean
manual : Boolean
ioInterface : Boolean
switchingSW : Boolean
rackCapacity : 1..5

<<ComponentType>>

Support
service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..11..1

0..10..1

TeCOM
analog_subscribers : 1..1000
digital_subscribers : 1..1000
ISDN_subscribers : 1..1000
trunk_lines : 1..10
max_load_peaks : 1..1000
end_user_devices : 1..3000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}
version : enum{"2.0","3.0"}
currency : enum{"EURO","USD"}

<<ComponentType>>

1..11..1

0..10..1

0..10..1

0..10..1

XPFeatures

smsPackage : Boolean
smsBox : Boolean
faxOnDemand : Boolean
text2Speech : Boolean
faxMail : Boolean

isdnServices : Boolean
unifiedMessaging : Boolean
voiceMail : Boolean
startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}
manual : Boolean

<<ComponentType>>

XPressions

version : enum{"2.0","3.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..10..1

1..11..1

XPServerPC

performanceLevel : 1..3
winNtServer : enum{"NT4.0","NT5.0"}
keyboard : Boolean
monitor : Boolean

<<ComponentType>>

0..10..1

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual
version : enum{"2.0"}

<<ComponentType>>

IPVFeatures

LDAPConnector : Boolean
voiceMail : Boolean
whiteboard : Boolean
protocol : enum{"T.120","H.320","H.323"}
conferenceFunction : Boolean
gatewayH320toH323 : Boolean
pc2PhoneConn : Boolean
startPackage : enum{"standard","deluxe","comfort"}
manual : Boolean

<<ComponentType>>

IPVServerPC

keyboard : Boolean
monitor : Boolean

<<ComponentType>>

Features
basicSystem : enum{"G9","G19","G29"}
ipVoice : Boolean
xPressions : Boolean
monitoringSW : Boolean
support : Boolean
additionalServerPC : Boolean
manual : Boolean
ioInterface : Boolean
switchingSW : Boolean
rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice
version : enum{"1.0","2.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..11..1

0..10..1

TeCOM

analog_subscribers : 1..1000
digital_subscribers : 1..1000
ISDN_subscribers : 1..1000
trunk_lines : 1..10
max_load_peaks : 1..1000
end_user_devices : 1..3000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}
version : enum{"2.0","3.0"}
currency : enum{"EURO","USD"}

<<ComponentType>>

1..11..1

0..10..1

0..10..1

0..10..1

XPFeatures
smsPackage : Boolean
smsBox : Boolean
faxOnDemand : Boolean
text2Speech : Boolean
faxMail : Boolean
isdnServices : Boolean
unifiedMessaging : Boolean
voiceMail : Boolean
startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}
manual : Boolean

<<ComponentType>>

XPressions

version : enum{"2.0","3.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>
0..10..1

1..11..1

XPServerPC

performanceLevel : 1..3
winNtServer : enum{"NT4.0","NT5.0"}

keyboard : Boolean
monitor : Boolean

<<ComponentType>>

0..10..1

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures
LDAPConnector : Boolean
voiceMail : Boolean

whiteboard : Boolean
protocol : enum{"T.120","H.320","H.323"}
conferenceFunction : Boolean
gatewayH320toH323 : Boolean
pc2PhoneConn : Boolean
startPackage : enum{"standard","deluxe","comfort"}
manual : Boolean

<<ComponentType>>

IPVServerPC
keyboard : Boolean
monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}
ipVoice : Boolean
xPressions : Boolean
monitoringSW : Boolean
support : Boolean
additionalServerPC : Boolean
manual : Boolean
ioInterface : Boolean
switchingSW : Boolean
rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..11..1

0..10..1

TeCOM

analog_subscribers : 1..1000
digital_subscribers : 1..1000
ISDN_subscribers : 1..1000
trunk_lines : 1..10
max_load_peaks : 1..1000
end_user_devices : 1..3000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}
version : enum{"2.0","3.0"}
currency : enum{"EURO","USD"}

<<ComponentType>>

1..11..1

0..10..1

0..10..1

0..10..1

XPFeatures

smsPackage : Boolean
smsBox : Boolean
faxOnDemand : Boolean
text2Speech : Boolean
faxMail : Boolean
isdnServices : Boolean
unifiedMessaging : Boolean
voiceMail : Boolean

startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}
manual : Boolean

<<ComponentType>>

XPressions
version : enum{"2.0","3.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..10..1

1..11..1

XPServerPC

performanceLevel : 1..3
winNtServer : enum{"NT4.0","NT5.0"}

keyboard : Boolean
monitor : Boolean

<<ComponentType>>

0..10..1

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures
LDAPConnector : Boolean
voiceMail : Boolean
whiteboard : Boolean
protocol : enum{"T.120","H.320","H.323"}

conferenceFunction : Boolean
gatewayH320toH323 : Boolean
pc2PhoneConn : Boolean
startPackage : enum{"standard","deluxe","comfort"}
manual : Boolean

<<ComponentType>>

IPVServerPC
keyboard : Boolean

monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}
ipVoice : Boolean
xPressions : Boolean
monitoringSW : Boolean
support : Boolean
additionalServerPC : Boolean
manual : Boolean
ioInterface : Boolean

switchingSW : Boolean
rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..11..1

0..10..1

TeCOM

analog_subscribers : 1..1000
digital_subscribers : 1..1000
ISDN_subscribers : 1..1000
trunk_lines : 1..10
max_load_peaks : 1..1000
end_user_devices : 1..3000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}
version : enum{"2.0","3.0"}
currency : enum{"EURO","USD"}

<<ComponentType>>

1..11..1

0..10..1

0..10..1

0..10..1

XPFeatures

smsPackage : Boolean
smsBox : Boolean
faxOnDemand : Boolean
text2Speech : Boolean
faxMail : Boolean
isdnServices : Boolean
unifiedMessaging : Boolean
voiceMail : Boolean
startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}
manual : Boolean

<<ComponentType>>

XPressions
version : enum{"2.0","3.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..10..1

1..11..1

XPServerPC

performanceLevel : 1..3
winNtServer : enum{"NT4.0","NT5.0"}
keyboard : Boolean
monitor : Boolean

<<ComponentType>>

0..10..1

Generic ontology level

I

Intermediate ontology level

Domain
ontology level

semantic
service
descriptions

L

I

L

Configuration Web
service, including
mediating capability

Basic configuration
Web service

LI
L

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures
LDAPConnector : Boolean
voiceMail : Boolean
whiteboard : Boolean
protocol : enum{"T.120","H.320","H.323"}
conferenceFunction : Boolean
gatewayH320toH323 : Boolean
pc2PhoneConn : Boolean
startPackage : enum{"standard","deluxe","comfort"}

manual : Boolean

<<ComponentType>>

IPVServerPC
keyboard : Boolean
monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}

ipVoice : Boolean
xPressions : Boolean
monitoringSW : Boolean
support : Boolean
additionalServerPC : Boolean
manual : Boolean
ioInterface : Boolean
switchingSW : Boolean
rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000
version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}
max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..11..1

0..10..1

TeCOM

analog_subscribers : 1..1000
digital_subscribers : 1..1000
ISDN_subscribers : 1..1000
trunk_lines : 1..10

max_load_peaks : 1..1000
end_user_devices : 1..3000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

version : enum{"2.0","3.0"}
currency : enum{"EURO","USD"}

<<ComponentType>>

1..11..1

0..10..1

0..10..1

0..10..1

XPFeatures

smsPackage : Boolean
smsBox : Boolean
faxOnDemand : Boolean

text2Speech : Boolean
faxMail : Boolean
isdnServices : Boolean
unifiedMessaging : Boolean
voiceMail : Boolean
startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}
manual : Boolean

<<ComponentType>>

XPressions
version : enum{"2.0","3.0"}
max_users : 10..1000
country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..10..1

1..11..1

XPServerPC

performanceLevel : 1..3
winNtServer : enum{"NT4.0","NT5.0"}
keyboard : Boolean
monitor : Boolean

<<ComponentType>>

0..10..1

advertises
advertises

advertises

advertises

advertises

semantic
service
descriptions

Legend:

u
se

Fig. 2. Web service scenario

towards the uppermost layer and in the following subsection we move on to show which
configuration domain specific modeling primitives are to be provided on the intermedi-
ate ontology level. For reasons of readability OIL text [1] is used for representation, i.e.
no RDFS-based representation of DAML+OIL is used.

4.1 Basic Configuration Ontology

A general ontology for the configuration domain is important in order to allow easy
configuration knowledge reuse and the integration of complex configurable products
within marketplace environments. The ontologies proposed by [26] and [5] serve as a
basis for the construction of application domain specific ontologies which allow the
description of configuration services on a semantic level. Refined concepts of classes
such as component types, resource types, port types, or function types are the basic
modeling concepts useful for building the basic product structure. The ontology defined
in [26] is based on the frame ontology of Ontolingua [11] and represents a synthesis of
resource-based, function- based, connection-based, and structure-based approaches for
representing configuration problems. A similar set of concepts is discussed in [5], where
the configuration ontology is represented as a UML profile with additional first order
formalizations guaranteeing a precise semantics for the provided modeling concepts.

198 Alexander Felfernig et al.

4.2 Product Domain Ontology for Network Services

While the intermediate configuration ontology contains only the basic concepts for mod-
eling product structures, it allows the construction of more specialized ontologies for
specific application domains. Furthermore, axioms and slot constraints provided in OIL
can be employed to formulate constraints on the configuration model. Exactly these
concepts will be refined in the following for representing (application) domain specific
ontologies that can be interpreted as a kind of functional product description [18], which
is used as a basic framework for formulating capabilities of suppliers and requirements
of customers. Figure 3 represents fragments of an ontology for defining configuration
services for IP-based Virtual Private Networks (IP-VPN)6. For our example we will

begin -ontology
ontology -container
title Product Domain Ontology
description IP-based Virtual Private Networks

language "OIL"

ontology -definitions

slot-def protocol
subslot -of

HasPart //defined in Configuration Ontology

class -def AccessProtocol
subclass -of

Function //defined in Configuration Ontology

class -def RouterAccess
subclass -of

AccessProtocol

class -def ModemAccess
subclass -of

AccessProtocol

class -def InternetAccess
subclass -of

AccessProtocol

class -def defined Country

class-def defined Town
 slot -constraint town_of cardinality 1 Country

class -def LineService
subclass -of

Function //defined in Configuration Ontology
 slot -constraint bandwidth cardinality 1 integer
 slot -constraint latency cardinality 1 integer
 slot -constraint identifier has-value integer

class -def BackBoneSection
subclass -of

LineService
 slot -constraint access_from has-value AccessLine

class -def defined AccessLine
subclass -of

LineService
 slot -constraint protocol cardinality 1 AccessProt ocol
 slot -constraint access_to cardinality 1 BackBoneSection
 slot -constraint pop cardinality 1 Town

instance -of UK Country

instance -of Manchester Town
related town_of Manchester UK

end-ontology

Fig. 3. Domain ontology for IP-VPN services

6 The complete example ontology in DAML+OIL can be downloaded from
http://www.cawicoms.org/ontology/ipvpn.rdfs.

Semantic Configuration Web Services in the CAWICOMS Project 199

concentrate on the provision of AccessLines that connect a customer location (slot pop -
’point of presence’) to aBackBoneSection. The chosen protocol (a refinement of theHas-
Part decomposition relationship in the configuration domain) can be either performed
via a router, via a modem or via an internet connection to some access gateway (Router-
Access, ModemAccess and InternetAccess are therefore specialized AccessProtocols).
In addition, an AccessLine is characterized by a bandwidth and latency property that it
inherits from its superclass LineService, which is in turn a refinement of the Function
concept (abstract characteristic of a product or service) from the basic configuration
ontology (intermediate ontology level). The instances contained in the ontology shown
in Figure 3 can be interpreted as basic catalog entries representing common knowledge
(e.g., British towns or zip codes), which are assigned to base classes of the application
domain ontology (in this case Manchester is provided as basic instance of the class
Town).

5 Web Service Scenario

The interaction between service providing agents can be differentiated into the three
areas service publishing, identification and execution. As depicted in the scenario in
Figure 2, only those agents can request a service that have the mediating capabilities to
receive service advertisements and perform service identification.

5.1 Service Publishing

Now we will show how the ontologies defined in Section 4 are used to semantically de-
scribe the offered configuration services. Semantic description of the demanded services
allows us to implement efficient matchmaking between supply and demand. Within these
semantic annotations, restrictions on the domain and cardinality of slots, constraints on
connections and structure, as well as the possible types of classes are possible. Further-
more, offered component instances can be represented as subconcepts (e.g. read from a
catalog) of the classes of the service domain-specific configuration ontology. Additional
supplier-specific constraints are introduced. Consequently, for the semantic description
of the capability of a configuration service of a specific supplier the product domain
ontology level provides the necessary base concepts that can be further refined. Figure
4 contains the semantic definition of the AccessLine services that are offered by the
fictitious telecommunication service providers BTT and Luton. BTT serves customers
located in the UK and Ireland (constraint on the slot pop) and can provide access toBack-
BoneSections 1 through 10 with a maximum bandwidth of 2000. In contrast Luton offers
connections from towns in France and the UK. Only modem or internet are offered proto-
col choices, a lower bandwidth is supported and fewer BackBoneSections are accessible.
For tailoring the application domain specific configuration ontology to supplier-specific
circumstances tool support for acquisition and maintenance of configuration models is
needed. Within the CAWICOMS project a Knowledge Acquisition Workbench is de-
veloped that provides the required tools for designing the service descriptions with a
graphical UML-based notation. The generic and the intermediate ontology level as de-
scribed in Section 4 are inherent to the modeling primitives offered by the tool suite and

200 Alexander Felfernig et al.

class-def defined BTT_AccessLine
subclass-of

AccessLine
 slot-constraint access_to value-type
 ((slot -constraint identifier value-type (min 1)) and
 (slot-constraint identifier value-type (max 10)))
 slot-constraint pop value-type ((slot -constraint town_of value-type (one-of UK))
 or (slot -constraint town_of value-type (one -of Ireland)))
 slot-constraint bandwidth value-type (max 2000)

class-def defined Luton_AccessLine
subclass-of

AccessLine
 slot-constraint pop value-type ((slot -constraint town_of value-type (one-of France))
 or (slot -constraint town_of value-type (one -of UK)))
 slot-constraint access_to value-type
 ((slot -constraint identifier value-type (min 5)) and
 (slot-constraint identifier value-type (max 8)))
 slot-constraint bandwidth value-type (max 1200)
 slot-constraint protocol has-value (ModemAccess or InternetAccess)

Fig. 4. Semantic description of offered services

therefore static in our approach. The tool environment supports human experts in defin-
ing and maintaining the application domain specific ontological descriptions as well as
in integrating them. The advertisement of the offered configuration services of different
suppliers is therefore part of an offline setup process. The functional descriptions of
the configurable products and services are communicated to all Web configurators that
may act as customers for their configuration service and integrated into their domain
ontologies by the human experts.

5.2 Service Identification

Having described service publication, we will now focus on the identification of relevant
Web service providers for a concrete demand. This task has similarities with the surgical
or parametric search problem [16], e.g. “a laptop with at least 20GB hard-disk, 800MHz
Pentium III processor or better, manufactured either by Dell or Compaq and costing less
than 2000USD”. However, for the configuration domainwe require evenmore enhanced
search capabilities for identifying the appropriate supply. The reason is, that requirements
cannot only be expressed as simple restrictions on product attributes, but also as con-
straints on the structure. The following example is based on the product domain ontology
(Figure 3), requestors are enabled to semantically describe the requested service as can
be seen in Figure 5. Let us assume that we search for an AccessLine provider that con-
nects us from Manchester via InternetAccess protocol to BackBoneSection ’3’ with a
bandwidth of 1200. Here the bandwidth slot-constraint is a simple attribute restriction,
but the constraint on the slot access to navigates to the related class BackBoneSection
and restricts the structure. For this example we can intuitively determine that BTT is an
appropriate supplier for the requested service, as the Required AccessLine qualifies as
a subclass to BTT AccessLine. However, for the general case identification of subsump-
tion relationships between offered and required concepts is too restrictive. Consider the
case where we would need this AccessLine either from Manchester or from Munich.
Assuming all other restrictions remain unchanged, the modified constraint on the slot

Semantic Configuration Web Services in the CAWICOMS Project 201

class-def defined Required_AccessLine
subclass-of

AccessLine
 slot-constraint bandwidth value-type (equal 1200)
 slot-constraint pop value-type (one -of Manchester)
 slot-constraint protocol value-type InternetAccess
 slot-constraint access_to has-value
 (slot -constraint identifier has-value (equal 3))

Fig. 5. Semantic description of required service

pop is given in Figure 67. Although BTT still provides an appropriate service, the con-
straint relaxation makes the subsumption of Required AccessLine by BTT AccessLine
impossible. So formally the matchmaking task for identification of an appropriate con-

class-def defined Required_AccessLine_1
subclass-of
AccessLine

 slot-constraint pop value-type ((one-of Manchester) or (one-of Munich))

Fig. 6. Modified service requirement

figuration service can be defined as follows.
Given: A consistent description logic theory T that represents the three ontological
layers of our marketplace, a set of concepts S = {S1, . . . , Sn} that describe supply
from n different suppliers, and a concept D representing the demanded service.
Task: Identify the set of concepts A, that contains all concepts Sa with Sa ∈ A, where
Sa is an appropriate service for D and A ⊆ S.
Definition (appropriate service): A service Sa is an appropriate service for D, iff
Sa ∪ D are consistent.
Note, that this diverges from the approaches taken for matchmaking among heteroge-
nous agents [27] or for Web service identification [17].
As already mentioned in the previous subsection, the configuration service models are
defined within a knowledge acquisition environment and automatically translated into
the proprietary knowledge representation formalism of a configuration agent. In our im-
plementation this matchmaking task is therefore performed as part of the search process
for a configuration solution of a constraint-based configurator engine. For the inter-
nal representation of the advertised service models as well as the service requests an
object-oriented framework for constraint variables is employed [14]. Reasoning on ser-
vice requirements as well as on service decomposition is performed by the underlying
Java-based constraint solver. The formulation of service requests and their replies is
enabled by a WebConnector component that owns an object model layer that accesses
the internal constraint representation of the constraint engine. This object model layer
represents the advertised configuration service descriptions. A service requestor agent

7 Note, that the inherited cardinality constraint restricts slot pop to exactly one Town, which gives
this constraint an exclusive or semantics.

202 Alexander Felfernig et al.

imposes its service request via an edit-query onto the object-model layer and retrieves
the configuration service result via a publish-query.
As will be also pointed out in the next subsection, the creation of standards for the defi-
nition of semantics of Web services will allow application independent mediating agents
to accept service advertisements and to perform the service identification task, which is
not the case in the current situation.

5.3 Service Execution

Requests for service execution must conform to an XML-based communication protocol
(WebConnector protocol) developed for the configuration domain in accordance with
the SOAP messaging standard. This protocol defines

– a fixed set of methods with defined semantics for the configuration domain, like
creating components, setting values for parameters, initiation of the search process,
or retrieving results,

– a mechanism to exchange complex data structures like configuration results and a
language for expressing navigation expressions within these data structures (com-
pare to XML-Schema and XPath), and

– extensibility mechanisms for special domains and support for a session concept in
HTTP-based transactions.

This way the semantics of the process model of the configuration Web service is de-
fined by a proprietary protocol. This assumption works for our specific requirement of
realizing collaborative configuration systems, but is only half way towards the vision
of Web services in the Semantic Web. Therefore, markup languages are required that
enable a standardized representation of service profiles for advertisement of services as
well as definitions of the process model. This way, the task of identifying appropriate
services and the decomposition of a service request into several separate requests can
be performed by domain independent mediators. Due to the lack of these standards,
this mediating functionality is in our case performed by application logic integrated into
the configuration systems. DAML-S8 is an example for an effort underway that aims at
providing such a standardized semantic markup for Web services that builds on top of
DAML+OIL.

6 Related Work

Beside standards for representing product catalogs [8], there exists a number of ap-
proaches for standardizing electronic commerce communication (e.g. Commerce XML
- cXML or Common Business Library - CBL) - these are XML-based communication
standards for B2B applications9, which also include basic mechanisms for product data
interchange and can be interpreted as ontologies supporting standardized communication

8 See http://www.daml.org/services for reference.
9 An overview on existing e-Commerce frameworks for business to business communication can
be found in [25].

Semantic Configuration Web Services in the CAWICOMS Project 203

between e-Business applications. However, these standards are restricted to the represen-
tation of standardized products, i.e. the basic properties of complex products, especially
configurable products are not considered. Basic mechanisms for product data integration
are already supported by a number of state-of-the-art B2B applications. However, the
integration of configuration systems into electronic marketplace environments is still an
open issue, i.e. not supported by today s systems. Problem Solving Methods (PSMs)
[2] support the decomposition of reasoning tasks of knowledge-based systems into sets
of subtasks and inference actions that are interconnected by knowledge roles. The goal
of the IBROW project [20] is the semiautomatic reuse of available problem solving
methods, where a software broker supports the knowledge engineer in configuring a
reasoning system by combining different PSMs. A similarity to the work of [20] exists
in the sense that the selection of suppliers (and corresponding configuration systems) is
a basic configuration task, where configurators must be selected which are capable of
cooperatively solving a distributed configuration task. The approach is different in the
sense that the major focus is on providing an environment which generally supports a
semi-automated reuse of problem solving methods, whereas our approach concentrates
on the automated integration of configuration services in an e-business environment.
The Infomaster system [15] provides basic mechanisms for integrating heterogeneous
information sources in order to provide a unique entry point for the users of the system.
Compared to our approach there is no support for the integration of configurable products
and the underlying configuration systems. The design of large scale products requires
the cooperation of a number of different experts. In the SHADE (Shared Dependency
Engineering) project [22] a KIF-based representation [21] was used for representing
engineering ontologies. This approach differs from the approach presented in this paper
in the sense that the provided ontology is majorly employed as a basis for the commu-
nication between the different engaged agents, but is not used as a means for describing
the capabilities of agents. The STEP standard [13] takes into account all aspects of a
product including geometry and organisational data [19]. The idea of STEP is to provide
means for defining application specific concepts for modeling products in a particular
application domain. These application specific concepts are standardised into parts of
STEP called Application Protocols which are defined using the EXPRESS data defini-
tion language (Application Protocols are EXPRESS schemas). EXPRESS itself includes
a set of modeling concepts useful for representing configurable products, however the
language can not be used to define an enterprise specific configuration model without
leaving the STEP standard. Similarities to our approach can be seen in the role of appli-
cation protocols in STEP which are very similar to the domain ontology level discussed
in this paper.

7 Conclusions

The Semantic Web [3] is the vision of developing enabling technologies for the Web
which supports access to its resources not only to humans but as well to applications
often denoted as agent-based systems providing services such as information brokering,
information filtering, intelligent search or synthesis of services [20]. This paper describes
an application scenario for semantic Web services in the domain of configuring telecom-

204 Alexander Felfernig et al.

munication services. It demonstrates how to apply Semantic Web technologies in order
to support the integration of configurable products and services in an environment for
distributed problem solving. DAML+OIL-based configuration service descriptions can
be used in order to match them with given customer requirements and the matchmaking
task to determine the adequacy of a service is defined. DAML+OIL formalisms are well
suited for representing the component structure of configurable products, i.e. part-of
associations and simple associations between component types and corresponding ba-
sic constraints. However, technologies supporting the vision of the Semantic Web are
still under development. In order to support a full scenario of distributed configuration
Web services, languages like DAML+OIL have to be extended with language elements
supporting the formulation of service advertisements as well as process definitions for
the interaction.

References

1. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A Reason-able Ontology Editor
for the Semantic Web. In Proceedings of Joint Austrian/German Conference on Artificial
Intelligence (KI), pages 396–408, Vienna, Austria, 2001.

2. R. Benjamins and D. Fensel. . Special issue on problem-solving methods of the International
Journal of Human-Computer Studies, 49(4), 1998.

3. T. Berners-Lee. Weaving the Web. Harper Business, 2000.
4. B. Chandrasekaran, J. Josephson, and R. Benjamins. What Are Ontologies, and Why do we

Need Them? IEEE Intelligent Systems, 14,1:20–26, 1999.
5. A. Felfernig, G. Friedrich, and D. Jannach. UML as domain specific language for the con-

struction of knowledge-based configuration systems. International Journal of Software En-
gineering and Knowledge Engineering (IJSEKE), 10(4):449–469, 2000.

6. A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, and M. Zanker. A Joint Foundation for
Configuration in the Semantic Web. Technical Report KLU-IFI-02-05, 2001.

7. A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Web-based configuration of Virtual
PrivateNetworkswithMultiple Suppliers. InProceedings of the 7th International Conference
on Artificial Intelligence in Design (AID), Cambridge, UK, 2002.

8. D. Fensel, Y. Ding, B. Omelayenko, E. Schulten, G. Botquin, M. Brown, and A. Flett. Product
Data Integration in B2B E-Commerce. IEEE Intelligent Systems, 16(4):54–59, 2001.

9. D. Fensel, F. vanHarmelen, I. Horrocks, D. McGuinness, and P.F. Patel-Schneider. OIL: An
Ontology Infrastructure for the Semantic Web. IEEE Intelligent Systems, 16(2):38–45, 2001.

10. A. Gangemi, D. M. Pisanelli, and G. Steve. An Overview of the ONIONS Project: Applying
Ontologies to the Integration of Medical Terminologies. Data and Knowledge Engineering,
31(2):183–220, 1999.

11. T.Gruber. A translation approach to portable ontology specifications. Knowledge Acquisition,
5:199–220, 1993.

12. J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30–37, 2001.
13. ISO. ISO Standard 10303-1: Industrial automation systems and integration - Product data

representation and exchange - Part 1: Overview and fundamental principles. 1994.
14. U. Junker. Preference-programming for Configuration. In Proceedings of IJCAI, Configura-

tion Workshop, Seattle, 2001.
15. A. M. Keller and M. R. Genesereth. Multivendor Catalogs: Smart Catalogs and Virtual

Catalogs. The Journal of Electronic Commerce, 9(3), 1996.
16. D.L. McGuinness. Ontologies and Online Commerce. IEEE Intelligent Systems, 16(2):9–10,

2001.

Semantic Configuration Web Services in the CAWICOMS Project 205

17. Sh. McIlraith, T.C. Son, and H. Zeng. Mobilizing the Semantic Web with DAML-Enabled
Web Services. In Proceedings of the IJCAI 2001 Workshop on E-Business and the Intelligent
Web, pages 29–39, Seattle, WA, 2001.

18. S. Mittal and F. Frayman. Towards a Generic Model of Configuration Tasks. In Proceedings
11th International Joint Conf. on Artificial Intelligence, pages 1395–1401, Detroit, MI, 1989.

19. T. Männistö, A. Martio, and R. Sulonen. Modelling generic product structures in STEP.
Computer-Aided Design, 30,14:1111–1118, 1999.

20. E. Motta, D. Fensel, M. Gaspari, and V.R. Benjamins. Specifications of Knowledge Compo-
nents for Reuse. In Proceedings of 11th International Conference on Software Engineering
and Knowledge Engineering, pages 36–43, Kaiserslautern, Germany, 1999.

21. R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. Swartout. Enabling
technology for knowledge sharing. AI Magazine, 12,3:36–56, 1991.

22. G.R.Olsen,M.Cutkosky, J.M.Tenenbaum, andT.R.Gruber. CollaborativeEngineering based
onKnowledgeSharingAgreements. InProceedings of theACMEDatabaseSymposium, pages
11–14, Minneapolis, MN, USA, 1994.

23. B.J. PineII, B. Victor, and A.C. Boynton. Making Mass Customization Work. Harvard
Business Review, Sep./Oct. 1993:109–119, 1993.

24. J. Rumbaugh, I. Jacobson, and G. Booch. TheUnifiedModeling Language ReferenceManual.
Addison-Wesley, 1998.

25. S.S.Y. Shim, V.S. Pendyala, M. Sundaram, and J.Z. Gao. E-Commerce Frameworks. IEEE
Computer, Oct. 2000:40–47, 2000.

26. T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen. Towards a General Ontology of
Configuration. AI Engineering Design Analysis and Manufacturing Journal, Special Issue:
Configuration Design, 12(4):357–372, 1998.

27. K. Sycara, M. Klusch, and S. Widoff. Dynamic Service Matchmaking among Agents in Open
Information Environments. ACM SIGMOD Record, Special Issue on Semantic Interoperabil-
ity in Global Information Systems, 1999.

	1 Introduction
	2 Application Scenario
	3 CAWICOMS Environment
	3.1 Web Services
	3.2 Ontologies
	3.3 Interaction Scenario

	4 Multi-layer Ontology Definition
	4.1 Basic Configuration Ontology
	4.2 Product Domain Ontology for Network Services

	5 Web Service Scenario
	5.1 Service Publishing
	5.2 Service Identification
	5.3 Service Execution

	6 Related Work
	7 Conclusions
	References

