

Everyone's a Winner! On Hyperparameter Tuning of Recommendation Models

Faisal Shehzad and <u>Dietmar Jannach</u> University of Klagenfurt, Austria dietmar.jannach@aau.at

RecSys 2023, Singapore

Recommender Systems Publication Culture

- Content of most of published recommender systems research:
 - 1. A **novel** machine learning model to predict user actions or preferences
 - 2. Empirical evidence that it substantially advances the state-of-the-art
- Requirement for 1:
 - Technical novelty
 - preferably exhibiting a certain level of complexity/sophistication
- Requirement for 2:
 - Experiments showing that "Ours" is better than the state-of-the-art
 - preferably with respect to all accuracy measures and for all datasets that are examined

The problem with the state-of-the-art

- Providing evidence that "Ours" advances the state-of-the-art
 - Problem: A state-of-the-art in the sense of a unique small set of models that is consistently better than other models does not exist
 - Accuracy results and algorithm rankings depend on datasets, data pre-processing steps, choice of accuracy metrics, choice of baselines, and tuning efforts
 - Solution: Provide experimental results involving a selection of very recent and/or commonly used alternatives to convince reviewers
 - Researchers have some freedom, e.g., in terms of datasets, baselines, and metrics.

The problem with the state-of-the-art

- Providing evidence that "Ours" advances the state-of-the-art
 - Problem: A state-of-the-art in the sense of a unique small set of models that is consistently better than other models does not exist
 - Accuracy results and algorithm rankings depend on datasets, data pre-processing steps, choice of accuracy metrics, choice of baselines, and tuning efforts
 - Solution: Provide experimental results involving a selection of very recent and/or commonly used alternatives to convince reviewers
 - Researchers have some freedom, e.g., in terms of datasets, baselines, metrics, etc.

Combining these aspects points to a potential problem already

Prerequisites for an insightful comparison

- Let us put the state-of-the-art problem aside
 - And accept that the experimental configuration (baselines, datasets, metrics, etc.) is done in good faith by the researcher
- Let us focus on what makes a *fair and, more importantly, insightful comparison*
- It is easy to agree that a comparison can only be insightful
 - if comparable effort is spent to optimize the performance of each model, including both "Ours" and the baseline models

Hyperparameter tuning

- The performance of machine learning model crucially depends on chosen hyperparameters
 - learning rate, embedding sizes, network structure, loss-related parameters, etc.
- Various techniques exist to find optimal/good hyperparameters for a given dataset

Hyperparameter tuning

- What is reported in many papers
 - Examined hyperparameter ranges for "Ours"
 - Tuning method for "Ours", e.g., grid search
 - Best hyperparameters for "Ours", sometimes per dataset
- And for the baselines?
 - Detailed information regarding hyperparameter ranges, process, and best values per dataset for the baselines almost always missing
 - Sometimes only vague and/or short statements are provided

Analyzing the current literature

- We scanned recent conference proceedings for papers reporting improved top-n recommendation results
 - KDD, RecSys, SIGIR, TheWebConf, WSDM
- Identified 21 relevant papers
- Analyzed what is documented regarding baseline tuning
 - We of course cannot know what has been actually done
- Disclaimer:
 - We observed similar documentation patterns regarding hyperparameter tuning process in our own previous work

Analyzing the current literature

- One somewhat positive example
 - Reports the searched ranges for "common" hyperparameters (e.g., learning rate, dropout ratio or the coefficient for L2 regularization)
 - Method-specific hyperparameters however taken from original papers
 - Where probably different datasets were used
 - Optimal values however not reported in the end
 - URL provided, but points to empty GitHub repository

Analyzing the current literature

- Another somewhat positive example
 - Reports some of the hyperparameter ranges and some chosen values also for the baselines
 - But does not report on how the parameters were found
 - However, only one set of hyperparameter values reported
 - Even though the evaluation was done on three datasets
- Overall
 - Only two of 21 papers report hyperparameter ranges and chosen values for "Ours" and baselines for each dataset
 - One of them points to an empty GitHub repository

Summing up

- We recall, for an insightful comparison: all hyperparameters of all models must be tuned for all datasets
 - This is usually a huge computational effort nowadays, often taking weeks
 - Still, many papers don't spend a single word on it
- Other common dark patterns
 - "We use the same embedding size for all models for fair comparison."
 - Clearly, the embedding size is a hyperparameter to tune for each model
 - About 50% of papers provide code
 - None of the papers provides the code for the baselines
 - Not providing code that produces the results in the paper (only training)

Consequences of improper tuning

- If we assume that some researchers actually did **not** tune the baselines, but only "Ours"
 - Beating the chosen baselines might become quite simple
 - The ranking of the baselines may more or less be random, because, e.g.,
 - Some parameters are taken from original papers (using different datasets and evaluation protocols and metrics)
 - Some parameters are just default parameters left in the code by the authors
 - Some parameters are chosen arbitrarily "for fair comparison"
 - In some cases, authors might not have even run the code of the baselines but copied the values from a previous paper

Consequences of improper tuning

- Every model can be declared "winner"
- Experiment (see paper):
 - We benchmarked eight recent neural models (the "state-of-the-art")
 - We tuned the hyperparameters for all of them for three datasets
 - We compared each tuned model against non-tuned ones
 - Non-tuned = using randomly chosen hyperparameters
 - Outcome:
 - Even the worst of the tuned models is better than all non-tuned models
 - Thus: Every model can be on the top of the ranking when compared to non-tuned alternatives/baselines

Every model could be "Ours"

Tuned models

1 1110 1110 11010					
ML-1M		AMZm		Epinions	
Model	nDCG@10	Model	nDCG@10	Model	nDCG@10
Mult-DAE	0,300	NeuMF	0,056	Mult-VAE	0,149
Mult-VAE	0,294	Mult-VAE	0,054	Mult-DAE	0.146
GMF	0,280	GMF	0,051	GMF	0,128
NeuMF	0,277	Mult-DAE	0,048	NeuMF	0,118
ONCF	0,225	MostPop	0,013	ONCF	0,077
MostPop	0,162	ConvMF	0,011	MostPop	0,045
ConvMF	0,160	NGCF	0,008	ConvMF	0,043
NGCF	0,100	ONCF	0,009	NGCF	0,031
Non-tuned models	>		>		>
Mult-DAE	0,071	Mult-DAE	0,003	Mult-DAE	0,015
ONCF	0,037	Mult-VAE	0,002	ONCF	0,005
ConvMF	0,022	ConvMF	0,002	NGCF	0,003
NeuMF	0,021	GMF	0,0007	GMF	0,002
GMF	0,016	NGCF	0,0006	Mult-VAE	0,002
NGCF	0,013	ONCF	0,0004	NeuMF	0,0008
Mult-VAE	0,006	NeuMF	0,0004	ConvMF	0,0008

Table 1. Accuracy results (NDCG@10) for tuned and non-tuned models, sorted by NDCG in descending order.

A little secret ..

- We used the exact same experimental configuration from [1].
- But we omitted the "shallow" EASE^R model by Steck
 - Which would be the overall best performing one
 - It also only has one relevant hyperparameter
- Which brings us back to some previous observation, which may lead to problems
 - Researchers have some freedom, e.g., in terms of datasets, baselines, metrics, etc.

The general problem is actually well known

- ... and limits the progress that we make
 - both in recommender systems research, as well as in information retrieval and other fields
 - Timothy G. Armstrong, Alistair Moffat, William Webber, and Justin Zobel. 2009. Improvements that don't add up: ad-hoc retrieval results since
 1998. In Proceedings of the 18th ACM conference on Information and knowledge management (CIKM '09).
 - Makridakis S, Spiliotis E, Assimakopoulos V (2018) Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS ONE 13(3): e0194889.
 - Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin. 2019. Critically Examining the "Neural Hype": Weak Baselines and the Additivity of Effectiveness Gains from Neural Ranking Models. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'19).
 - Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. 2020. Neural Collaborative Filtering vs. Matrix Factorization Revisited. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys '20).
 - Ferrari Dacrema, M., Boglio, S., Cremonesi, P. and Jannach, D.: "A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research". ACM Transactions on Information Systems, Vol. 39(2). 2021

- ...

Please Commit More Blatant Academic Fraud

Posted on May 29, 2021

• A more drastic description of "day-to-day fraud"

"[...] Trying that shiny new algorithm out on a couple dozen seeds, and then only reporting the best few.

Running a big hyperparameter sweep on your proposed approach but using the defaults for the baseline.

Cherry-picking examples where your model looks good, or cherry-picking whole datasets to test on, where you've confirmed your model's advantage. "

D. Picard: Torch.manual_seed(3407) is all you need: On the influence of random seeds in deep learning architectures for computer vision, arxiv, 2021

What are the reasons?

- It is easy to agree that zero insights regarding relative algorithm performance can be obtained from such experiments
- Why is it *apparently* still common?
 - Implementing all baselines in a common framework is tedious
 - Tuning hyperparameters can be computationally complex
 - Some ideas probably just turn out not to work at all

But most importantly:

It is the accepted standard even for our top-level publication outlets!

What can we do – ways forward

- Change the publication culture and incentivization system
 - From leaderboard chasing to real-world problems
- Raise awareness, educate and train all involved stakeholders
 - Students, teachers, textbook authors, reviewers, grant evaluators, ...
- Improve our methodological standards, various proposals exist
 - Do fair comparisons
 - Publish all code and data to exactly reproduce all reported results
 - Use validated evaluation frameworks

Bauer, C., Fröbe, M., Jannach, D., Kruschwitz, U., Rosso, P., Spina, D. and Tintarev, N.: "Overcoming Methodological Challenges in Information Retrieval and Recommender Systems through Awareness and Education". In: Dagstuhl Seminar 23031: Frontiers of Information Access Experimentation for Research and Education. 2023

Thank you!

- Congratulations to everyone who is a winner this year!
- Time for questions, contact: <u>dietmar.jannach@aau.at</u>

